Properties

Label 3.3e4_5e4.12t33.4
Dimension 3
Group $\PSL(2,5)$
Conductor $ 3^{4} \cdot 5^{4}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\PSL(2,5)$
Conductor:$50625= 3^{4} \cdot 5^{4} $
Artin number field: Splitting field of $f= x^{6} - 25 x^{3} - 15 x + 150 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 5 + \left(15 a + 16\right)\cdot 23 + \left(13 a + 17\right)\cdot 23^{2} + \left(4 a + 15\right)\cdot 23^{3} + 6 a\cdot 23^{4} + 11 a\cdot 23^{5} + \left(15 a + 3\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 11 + 12\cdot 23 + 8\cdot 23^{2} + 10\cdot 23^{3} + 12\cdot 23^{4} + 7\cdot 23^{5} + 20\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 6 + \left(9 a + 19\right)\cdot 23 + \left(11 a + 18\right)\cdot 23^{2} + 15 a\cdot 23^{3} + \left(15 a + 21\right)\cdot 23^{4} + \left(11 a + 13\right)\cdot 23^{5} + \left(5 a + 7\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 19 + \left(7 a + 16\right)\cdot 23 + \left(9 a + 6\right)\cdot 23^{2} + \left(18 a + 11\right)\cdot 23^{3} + \left(16 a + 8\right)\cdot 23^{4} + \left(11 a + 16\right)\cdot 23^{5} + \left(7 a + 22\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 18 + 14\cdot 23 + 7\cdot 23^{2} + 10\cdot 23^{3} + 12\cdot 23^{4} + 9\cdot 23^{5} + 8\cdot 23^{6} +O\left(23^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 21 a + 10 + \left(13 a + 12\right)\cdot 23 + \left(11 a + 9\right)\cdot 23^{2} + \left(7 a + 20\right)\cdot 23^{3} + \left(7 a + 13\right)\cdot 23^{4} + \left(11 a + 21\right)\cdot 23^{5} + \left(17 a + 6\right)\cdot 23^{6} +O\left(23^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6,3)(2,5,4)$
$(1,3)(2,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$15$ $2$ $(1,6)(3,5)$ $-1$ $-1$
$20$ $3$ $(1,6,3)(2,5,4)$ $0$ $0$
$12$ $5$ $(2,4,5,6,3)$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$
$12$ $5$ $(2,5,3,4,6)$ $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ $-\zeta_{5}^{3} - \zeta_{5}^{2}$
The blue line marks the conjugacy class containing complex conjugation.