Properties

Label 3.3e4_5e3_19e2.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3^{4} \cdot 5^{3} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$3655125= 3^{4} \cdot 5^{3} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} - 49 x^{3} - 306 x^{2} - 447 x - 811 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 53 + 34\cdot 71 + 61\cdot 71^{2} + 2\cdot 71^{3} + 70\cdot 71^{4} + 70\cdot 71^{5} + 15\cdot 71^{6} + 7\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 51 a + 35 + \left(14 a + 58\right)\cdot 71 + \left(17 a + 27\right)\cdot 71^{2} + \left(35 a + 33\right)\cdot 71^{3} + \left(a + 2\right)\cdot 71^{4} + \left(20 a + 57\right)\cdot 71^{5} + \left(7 a + 43\right)\cdot 71^{6} + 50\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 34 + 44\cdot 71 + 60\cdot 71^{2} + 38\cdot 71^{3} + 50\cdot 71^{4} + 62\cdot 71^{5} + 67\cdot 71^{6} + 49\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 66 a + 53 + \left(58 a + 28\right)\cdot 71 + \left(57 a + 50\right)\cdot 71^{2} + \left(42 a + 11\right)\cdot 71^{3} + \left(36 a + 9\right)\cdot 71^{4} + \left(16 a + 36\right)\cdot 71^{5} + \left(39 a + 63\right)\cdot 71^{6} + \left(10 a + 39\right)\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 20 a + 66 + \left(56 a + 36\right)\cdot 71 + \left(53 a + 47\right)\cdot 71^{2} + \left(35 a + 15\right)\cdot 71^{3} + \left(69 a + 41\right)\cdot 71^{4} + \left(50 a + 24\right)\cdot 71^{5} + \left(63 a + 38\right)\cdot 71^{6} + \left(70 a + 43\right)\cdot 71^{7} +O\left(71^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 43 + \left(12 a + 9\right)\cdot 71 + \left(13 a + 36\right)\cdot 71^{2} + \left(28 a + 39\right)\cdot 71^{3} + \left(34 a + 39\right)\cdot 71^{4} + \left(54 a + 32\right)\cdot 71^{5} + \left(31 a + 54\right)\cdot 71^{6} + \left(60 a + 21\right)\cdot 71^{7} +O\left(71^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,3)$
$(4,6)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(2,5)$ $-1$
$4$ $3$ $(1,4,2)(3,6,5)$ $0$
$4$ $3$ $(1,2,4)(3,5,6)$ $0$
$4$ $6$ $(1,6,5,3,4,2)$ $0$
$4$ $6$ $(1,2,4,3,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.