Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 44 a^{2} + 23 + \left(7 a^{2} + 31 a + 37\right)\cdot 47 + \left(17 a^{2} + 32 a + 42\right)\cdot 47^{2} + \left(3 a^{2} + a + 45\right)\cdot 47^{3} + \left(17 a^{2} + 19 a + 21\right)\cdot 47^{4} + \left(32 a^{2} + 22 a + 34\right)\cdot 47^{5} + \left(31 a^{2} + 11 a + 12\right)\cdot 47^{6} + \left(24 a^{2} + 15 a + 41\right)\cdot 47^{7} + \left(10 a^{2} + 3 a + 31\right)\cdot 47^{8} + \left(44 a^{2} + 8 a + 40\right)\cdot 47^{9} + \left(30 a^{2} + 46 a + 18\right)\cdot 47^{10} + \left(29 a^{2} + 19 a + 9\right)\cdot 47^{11} + \left(9 a^{2} + 28 a + 45\right)\cdot 47^{12} + \left(22 a^{2} + 6 a + 27\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 18 a + 42 + \left(30 a^{2} + 40 a + 26\right)\cdot 47 + \left(40 a^{2} + 26 a + 4\right)\cdot 47^{2} + \left(43 a^{2} + 4 a + 8\right)\cdot 47^{3} + \left(24 a^{2} + 37 a + 20\right)\cdot 47^{4} + \left(14 a^{2} + 12 a + 24\right)\cdot 47^{5} + \left(43 a^{2} + 33 a + 15\right)\cdot 47^{6} + \left(29 a^{2} + 33 a + 17\right)\cdot 47^{7} + \left(20 a^{2} + 34 a + 26\right)\cdot 47^{8} + \left(46 a^{2} + 32 a + 5\right)\cdot 47^{9} + \left(45 a^{2} + 44 a + 13\right)\cdot 47^{10} + \left(17 a^{2} + 12\right)\cdot 47^{11} + \left(a^{2} + 10 a + 28\right)\cdot 47^{12} + \left(26 a^{2} + 26 a + 31\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 3 + 35\cdot 47 + 26\cdot 47^{2} + 4\cdot 47^{3} + 28\cdot 47^{4} + 3\cdot 47^{5} + 10\cdot 47^{6} + 10\cdot 47^{7} + 35\cdot 47^{8} + 36\cdot 47^{9} + 46\cdot 47^{10} + 29\cdot 47^{11} + 23\cdot 47^{12} + 36\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 30 a^{2} + 19 a + 8 + \left(16 a^{2} + 30 a\right)\cdot 47 + \left(33 a^{2} + 4 a + 37\right)\cdot 47^{2} + \left(34 a^{2} + 43 a + 36\right)\cdot 47^{3} + \left(30 a^{2} + 42 a + 31\right)\cdot 47^{4} + \left(41 a^{2} + 2 a + 31\right)\cdot 47^{5} + \left(5 a^{2} + 23 a + 34\right)\cdot 47^{6} + \left(6 a^{2} + 18 a + 16\right)\cdot 47^{7} + \left(31 a^{2} + 17 a\right)\cdot 47^{8} + \left(10 a^{2} + 15 a + 28\right)\cdot 47^{9} + \left(12 a^{2} + 45 a + 39\right)\cdot 47^{10} + \left(41 a^{2} + 21 a + 11\right)\cdot 47^{11} + \left(a^{2} + 28 a + 29\right)\cdot 47^{12} + \left(16 a^{2} + 35 a + 11\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 15 + 28\cdot 47 + 5\cdot 47^{2} + 33\cdot 47^{3} + 40\cdot 47^{4} + 30\cdot 47^{5} + 24\cdot 47^{6} + 15\cdot 47^{7} + 27\cdot 47^{8} + 25\cdot 47^{9} + 7\cdot 47^{10} + 17\cdot 47^{11} + 27\cdot 47^{12} + 8\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 17 a^{2} + 10 a + 29 + \left(23 a + 14\right)\cdot 47 + \left(20 a^{2} + 15 a + 10\right)\cdot 47^{2} + \left(15 a^{2} + 46 a + 45\right)\cdot 47^{3} + \left(38 a^{2} + 13 a + 46\right)\cdot 47^{4} + \left(37 a^{2} + 31 a + 23\right)\cdot 47^{5} + \left(44 a^{2} + 37 a + 18\right)\cdot 47^{6} + \left(10 a^{2} + 41 a + 26\right)\cdot 47^{7} + \left(42 a^{2} + 41 a + 22\right)\cdot 47^{8} + \left(36 a^{2} + 45 a + 33\right)\cdot 47^{9} + \left(35 a^{2} + 3 a + 39\right)\cdot 47^{10} + \left(34 a^{2} + 24 a + 45\right)\cdot 47^{11} + \left(43 a^{2} + 8 a + 18\right)\cdot 47^{12} + \left(4 a^{2} + 32 a + 36\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 14 a^{2} + 42 a + 10 + \left(36 a^{2} + 38 a\right)\cdot 47 + \left(35 a^{2} + 23 a + 33\right)\cdot 47^{2} + \left(33 a^{2} + 43 a + 12\right)\cdot 47^{3} + \left(24 a^{2} + 38 a + 37\right)\cdot 47^{4} + \left(26 a^{2} + 23 a + 22\right)\cdot 47^{5} + \left(8 a^{2} + 11 a + 13\right)\cdot 47^{6} + \left(27 a^{2} + 37 a + 46\right)\cdot 47^{7} + \left(9 a^{2} + 28 a + 29\right)\cdot 47^{8} + \left(20 a^{2} + 24 a + 39\right)\cdot 47^{9} + \left(30 a^{2} + 10 a + 17\right)\cdot 47^{10} + \left(20 a^{2} + 28 a + 38\right)\cdot 47^{11} + \left(2 a^{2} + 7 a + 30\right)\cdot 47^{12} + \left(41 a^{2} + 18\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 36 a^{2} + 5 a + 7 + \left(2 a^{2} + 24 a + 27\right)\cdot 47 + \left(41 a^{2} + 37 a + 43\right)\cdot 47^{2} + \left(9 a^{2} + a + 11\right)\cdot 47^{3} + \left(5 a^{2} + 36 a + 45\right)\cdot 47^{4} + \left(35 a^{2} + 39\right)\cdot 47^{5} + \left(6 a^{2} + 24 a + 9\right)\cdot 47^{6} + \left(42 a^{2} + 41 a + 29\right)\cdot 47^{7} + \left(26 a^{2} + 14 a + 17\right)\cdot 47^{8} + \left(29 a^{2} + 14 a + 11\right)\cdot 47^{9} + \left(32 a^{2} + 37 a + 22\right)\cdot 47^{10} + \left(43 a^{2} + 45 a + 37\right)\cdot 47^{11} + \left(34 a^{2} + 10 a + 1\right)\cdot 47^{12} + \left(30 a^{2} + 40 a + 45\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
| $r_{ 9 }$ |
$=$ |
$ 4 + 18\cdot 47 + 31\cdot 47^{2} + 36\cdot 47^{3} + 9\cdot 47^{4} + 23\cdot 47^{5} + 47^{6} + 32\cdot 47^{7} + 43\cdot 47^{8} + 13\cdot 47^{9} + 29\cdot 47^{10} + 32\cdot 47^{11} + 29\cdot 47^{12} + 18\cdot 47^{13} +O\left(47^{ 14 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 9 }$
| Cycle notation |
| $(1,7,8)(2,6,4)(3,5,9)$ |
| $(1,4,9)(2,3,7)(5,8,6)$ |
| $(2,3)(4,9)(5,6)$ |
| $(2,4,6)(3,5,9)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 9 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $9$ | $2$ | $(2,3)(4,9)(5,6)$ | $-1$ |
| $1$ | $3$ | $(1,7,8)(2,6,4)(3,5,9)$ | $-3 \zeta_{3} - 3$ |
| $1$ | $3$ | $(1,8,7)(2,4,6)(3,9,5)$ | $3 \zeta_{3}$ |
| $6$ | $3$ | $(1,4,9)(2,3,7)(5,8,6)$ | $0$ |
| $6$ | $3$ | $(1,6,9)(2,5,8)(3,7,4)$ | $0$ |
| $6$ | $3$ | $(2,4,6)(3,5,9)$ | $0$ |
| $6$ | $3$ | $(1,9,2)(3,6,7)(4,8,5)$ | $0$ |
| $9$ | $6$ | $(1,7,8)(2,5,4,3,6,9)$ | $\zeta_{3} + 1$ |
| $9$ | $6$ | $(1,8,7)(2,9,6,3,4,5)$ | $-\zeta_{3}$ |
The blue line marks the conjugacy class containing complex conjugation.