Properties

Label 3.3e4_5e2_11e2.18t24.6c1
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 3^{4} \cdot 5^{2} \cdot 11^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$245025= 3^{4} \cdot 5^{2} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{9} - 9 x^{7} - 10 x^{6} + 12 x^{5} + 12 x^{4} - 24 x^{3} - 15 x^{2} + 12 x + 13 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: 18T24
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{3} + 3 x + 42 $
Roots:
$r_{ 1 }$ $=$ $ 44 a^{2} + 23 + \left(7 a^{2} + 31 a + 37\right)\cdot 47 + \left(17 a^{2} + 32 a + 42\right)\cdot 47^{2} + \left(3 a^{2} + a + 45\right)\cdot 47^{3} + \left(17 a^{2} + 19 a + 21\right)\cdot 47^{4} + \left(32 a^{2} + 22 a + 34\right)\cdot 47^{5} + \left(31 a^{2} + 11 a + 12\right)\cdot 47^{6} + \left(24 a^{2} + 15 a + 41\right)\cdot 47^{7} + \left(10 a^{2} + 3 a + 31\right)\cdot 47^{8} + \left(44 a^{2} + 8 a + 40\right)\cdot 47^{9} + \left(30 a^{2} + 46 a + 18\right)\cdot 47^{10} + \left(29 a^{2} + 19 a + 9\right)\cdot 47^{11} + \left(9 a^{2} + 28 a + 45\right)\cdot 47^{12} + \left(22 a^{2} + 6 a + 27\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 18 a + 42 + \left(30 a^{2} + 40 a + 26\right)\cdot 47 + \left(40 a^{2} + 26 a + 4\right)\cdot 47^{2} + \left(43 a^{2} + 4 a + 8\right)\cdot 47^{3} + \left(24 a^{2} + 37 a + 20\right)\cdot 47^{4} + \left(14 a^{2} + 12 a + 24\right)\cdot 47^{5} + \left(43 a^{2} + 33 a + 15\right)\cdot 47^{6} + \left(29 a^{2} + 33 a + 17\right)\cdot 47^{7} + \left(20 a^{2} + 34 a + 26\right)\cdot 47^{8} + \left(46 a^{2} + 32 a + 5\right)\cdot 47^{9} + \left(45 a^{2} + 44 a + 13\right)\cdot 47^{10} + \left(17 a^{2} + 12\right)\cdot 47^{11} + \left(a^{2} + 10 a + 28\right)\cdot 47^{12} + \left(26 a^{2} + 26 a + 31\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 3 + 35\cdot 47 + 26\cdot 47^{2} + 4\cdot 47^{3} + 28\cdot 47^{4} + 3\cdot 47^{5} + 10\cdot 47^{6} + 10\cdot 47^{7} + 35\cdot 47^{8} + 36\cdot 47^{9} + 46\cdot 47^{10} + 29\cdot 47^{11} + 23\cdot 47^{12} + 36\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 30 a^{2} + 19 a + 8 + \left(16 a^{2} + 30 a\right)\cdot 47 + \left(33 a^{2} + 4 a + 37\right)\cdot 47^{2} + \left(34 a^{2} + 43 a + 36\right)\cdot 47^{3} + \left(30 a^{2} + 42 a + 31\right)\cdot 47^{4} + \left(41 a^{2} + 2 a + 31\right)\cdot 47^{5} + \left(5 a^{2} + 23 a + 34\right)\cdot 47^{6} + \left(6 a^{2} + 18 a + 16\right)\cdot 47^{7} + \left(31 a^{2} + 17 a\right)\cdot 47^{8} + \left(10 a^{2} + 15 a + 28\right)\cdot 47^{9} + \left(12 a^{2} + 45 a + 39\right)\cdot 47^{10} + \left(41 a^{2} + 21 a + 11\right)\cdot 47^{11} + \left(a^{2} + 28 a + 29\right)\cdot 47^{12} + \left(16 a^{2} + 35 a + 11\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 15 + 28\cdot 47 + 5\cdot 47^{2} + 33\cdot 47^{3} + 40\cdot 47^{4} + 30\cdot 47^{5} + 24\cdot 47^{6} + 15\cdot 47^{7} + 27\cdot 47^{8} + 25\cdot 47^{9} + 7\cdot 47^{10} + 17\cdot 47^{11} + 27\cdot 47^{12} + 8\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 17 a^{2} + 10 a + 29 + \left(23 a + 14\right)\cdot 47 + \left(20 a^{2} + 15 a + 10\right)\cdot 47^{2} + \left(15 a^{2} + 46 a + 45\right)\cdot 47^{3} + \left(38 a^{2} + 13 a + 46\right)\cdot 47^{4} + \left(37 a^{2} + 31 a + 23\right)\cdot 47^{5} + \left(44 a^{2} + 37 a + 18\right)\cdot 47^{6} + \left(10 a^{2} + 41 a + 26\right)\cdot 47^{7} + \left(42 a^{2} + 41 a + 22\right)\cdot 47^{8} + \left(36 a^{2} + 45 a + 33\right)\cdot 47^{9} + \left(35 a^{2} + 3 a + 39\right)\cdot 47^{10} + \left(34 a^{2} + 24 a + 45\right)\cdot 47^{11} + \left(43 a^{2} + 8 a + 18\right)\cdot 47^{12} + \left(4 a^{2} + 32 a + 36\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 14 a^{2} + 42 a + 10 + \left(36 a^{2} + 38 a\right)\cdot 47 + \left(35 a^{2} + 23 a + 33\right)\cdot 47^{2} + \left(33 a^{2} + 43 a + 12\right)\cdot 47^{3} + \left(24 a^{2} + 38 a + 37\right)\cdot 47^{4} + \left(26 a^{2} + 23 a + 22\right)\cdot 47^{5} + \left(8 a^{2} + 11 a + 13\right)\cdot 47^{6} + \left(27 a^{2} + 37 a + 46\right)\cdot 47^{7} + \left(9 a^{2} + 28 a + 29\right)\cdot 47^{8} + \left(20 a^{2} + 24 a + 39\right)\cdot 47^{9} + \left(30 a^{2} + 10 a + 17\right)\cdot 47^{10} + \left(20 a^{2} + 28 a + 38\right)\cdot 47^{11} + \left(2 a^{2} + 7 a + 30\right)\cdot 47^{12} + \left(41 a^{2} + 18\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 36 a^{2} + 5 a + 7 + \left(2 a^{2} + 24 a + 27\right)\cdot 47 + \left(41 a^{2} + 37 a + 43\right)\cdot 47^{2} + \left(9 a^{2} + a + 11\right)\cdot 47^{3} + \left(5 a^{2} + 36 a + 45\right)\cdot 47^{4} + \left(35 a^{2} + 39\right)\cdot 47^{5} + \left(6 a^{2} + 24 a + 9\right)\cdot 47^{6} + \left(42 a^{2} + 41 a + 29\right)\cdot 47^{7} + \left(26 a^{2} + 14 a + 17\right)\cdot 47^{8} + \left(29 a^{2} + 14 a + 11\right)\cdot 47^{9} + \left(32 a^{2} + 37 a + 22\right)\cdot 47^{10} + \left(43 a^{2} + 45 a + 37\right)\cdot 47^{11} + \left(34 a^{2} + 10 a + 1\right)\cdot 47^{12} + \left(30 a^{2} + 40 a + 45\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 9 }$ $=$ $ 4 + 18\cdot 47 + 31\cdot 47^{2} + 36\cdot 47^{3} + 9\cdot 47^{4} + 23\cdot 47^{5} + 47^{6} + 32\cdot 47^{7} + 43\cdot 47^{8} + 13\cdot 47^{9} + 29\cdot 47^{10} + 32\cdot 47^{11} + 29\cdot 47^{12} + 18\cdot 47^{13} +O\left(47^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,7,8)(2,6,4)(3,5,9)$
$(1,4,9)(2,3,7)(5,8,6)$
$(2,3)(4,9)(5,6)$
$(2,4,6)(3,5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(2,3)(4,9)(5,6)$$-1$
$1$$3$$(1,7,8)(2,6,4)(3,5,9)$$-3 \zeta_{3} - 3$
$1$$3$$(1,8,7)(2,4,6)(3,9,5)$$3 \zeta_{3}$
$6$$3$$(1,4,9)(2,3,7)(5,8,6)$$0$
$6$$3$$(1,6,9)(2,5,8)(3,7,4)$$0$
$6$$3$$(2,4,6)(3,5,9)$$0$
$6$$3$$(1,9,2)(3,6,7)(4,8,5)$$0$
$9$$6$$(1,7,8)(2,5,4,3,6,9)$$\zeta_{3} + 1$
$9$$6$$(1,8,7)(2,9,6,3,4,5)$$-\zeta_{3}$
The blue line marks the conjugacy class containing complex conjugation.