Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 4 a + 9 + 6\cdot 11 + \left(5 a + 6\right)\cdot 11^{2} + \left(8 a + 7\right)\cdot 11^{3} + \left(3 a + 7\right)\cdot 11^{4} + 3 a\cdot 11^{5} + \left(5 a + 2\right)\cdot 11^{6} + 9 a\cdot 11^{7} + \left(9 a + 7\right)\cdot 11^{8} + \left(10 a + 10\right)\cdot 11^{9} + \left(6 a + 7\right)\cdot 11^{10} + 9 a\cdot 11^{11} + \left(9 a + 7\right)\cdot 11^{12} + \left(2 a + 4\right)\cdot 11^{13} + \left(6 a + 5\right)\cdot 11^{14} + 7\cdot 11^{15} +O\left(11^{ 16 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 2 + 9\cdot 11 + 3\cdot 11^{2} + 5\cdot 11^{3} + 7\cdot 11^{4} + 8\cdot 11^{5} + 7\cdot 11^{6} + 11^{8} + 10\cdot 11^{9} + 7\cdot 11^{10} + 3\cdot 11^{11} + 5\cdot 11^{12} + 3\cdot 11^{13} + 3\cdot 11^{14} + 7\cdot 11^{15} +O\left(11^{ 16 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 a + 3 + \left(10 a + 4\right)\cdot 11 + \left(5 a + 4\right)\cdot 11^{2} + \left(2 a + 3\right)\cdot 11^{3} + \left(7 a + 3\right)\cdot 11^{4} + \left(7 a + 10\right)\cdot 11^{5} + \left(5 a + 8\right)\cdot 11^{6} + \left(a + 10\right)\cdot 11^{7} + \left(a + 3\right)\cdot 11^{8} + \left(4 a + 3\right)\cdot 11^{10} + \left(a + 10\right)\cdot 11^{11} + \left(a + 3\right)\cdot 11^{12} + \left(8 a + 6\right)\cdot 11^{13} + \left(4 a + 5\right)\cdot 11^{14} + \left(10 a + 3\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 10 + 11 + 7\cdot 11^{2} + 5\cdot 11^{3} + 3\cdot 11^{4} + 2\cdot 11^{5} + 3\cdot 11^{6} + 10\cdot 11^{7} + 9\cdot 11^{8} + 3\cdot 11^{10} + 7\cdot 11^{11} + 5\cdot 11^{12} + 7\cdot 11^{13} + 7\cdot 11^{14} + 3\cdot 11^{15} +O\left(11^{ 16 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 3 a + \left(a + 10\right)\cdot 11 + \left(2 a + 1\right)\cdot 11^{2} + \left(6 a + 5\right)\cdot 11^{3} + \left(10 a + 9\right)\cdot 11^{4} + 8\cdot 11^{5} + \left(9 a + 9\right)\cdot 11^{6} + \left(6 a + 1\right)\cdot 11^{7} + \left(2 a + 9\right)\cdot 11^{8} + \left(a + 9\right)\cdot 11^{9} + \left(9 a + 9\right)\cdot 11^{10} + \left(10 a + 4\right)\cdot 11^{11} + \left(6 a + 2\right)\cdot 11^{12} + 2\cdot 11^{13} + \left(2 a + 7\right)\cdot 11^{14} + \left(2 a + 7\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 8 a + 1 + \left(9 a + 1\right)\cdot 11 + \left(8 a + 9\right)\cdot 11^{2} + \left(4 a + 5\right)\cdot 11^{3} + 11^{4} + \left(10 a + 2\right)\cdot 11^{5} + \left(a + 1\right)\cdot 11^{6} + \left(4 a + 9\right)\cdot 11^{7} + \left(8 a + 1\right)\cdot 11^{8} + \left(9 a + 1\right)\cdot 11^{9} + \left(a + 1\right)\cdot 11^{10} + 6\cdot 11^{11} + \left(4 a + 8\right)\cdot 11^{12} + \left(10 a + 8\right)\cdot 11^{13} + \left(8 a + 3\right)\cdot 11^{14} + \left(8 a + 3\right)\cdot 11^{15} +O\left(11^{ 16 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(2,4)$ |
| $(1,3)$ |
| $(5,6)$ |
| $(1,2,5)(3,4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,3)(2,4)(5,6)$ |
$-3$ |
| $3$ |
$2$ |
$(1,3)$ |
$1$ |
| $3$ |
$2$ |
$(1,3)(2,4)$ |
$-1$ |
| $4$ |
$3$ |
$(1,2,5)(3,4,6)$ |
$0$ |
| $4$ |
$3$ |
$(1,5,2)(3,6,4)$ |
$0$ |
| $4$ |
$6$ |
$(1,4,6,3,2,5)$ |
$0$ |
| $4$ |
$6$ |
$(1,5,2,3,6,4)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.