Properties

Label 3.3e4_53.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3^{4} \cdot 53 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$4293= 3^{4} \cdot 53 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} - 7 x^{3} + 3 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 25 + 8\cdot 37 + 21\cdot 37^{2} + 8\cdot 37^{3} + 3\cdot 37^{4} + 20\cdot 37^{5} + 7\cdot 37^{6} + 37^{7} + 12\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 13 + 28\cdot 37 + 15\cdot 37^{2} + 28\cdot 37^{3} + 33\cdot 37^{4} + 16\cdot 37^{5} + 29\cdot 37^{6} + 35\cdot 37^{7} + 24\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 9 + \left(12 a + 15\right)\cdot 37 + \left(23 a + 33\right)\cdot 37^{2} + \left(21 a + 23\right)\cdot 37^{3} + \left(27 a + 29\right)\cdot 37^{4} + \left(25 a + 17\right)\cdot 37^{5} + \left(34 a + 17\right)\cdot 37^{6} + \left(8 a + 36\right)\cdot 37^{7} + \left(19 a + 2\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 33 a + 27 + \left(a + 12\right)\cdot 37 + \left(33 a + 27\right)\cdot 37^{2} + \left(13 a + 25\right)\cdot 37^{3} + \left(32 a + 34\right)\cdot 37^{4} + \left(2 a + 28\right)\cdot 37^{5} + \left(36 a + 21\right)\cdot 37^{6} + \left(18 a + 35\right)\cdot 37^{7} + \left(27 a + 9\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 11 + \left(35 a + 24\right)\cdot 37 + \left(3 a + 9\right)\cdot 37^{2} + \left(23 a + 11\right)\cdot 37^{3} + \left(4 a + 2\right)\cdot 37^{4} + \left(34 a + 8\right)\cdot 37^{5} + 15\cdot 37^{6} + \left(18 a + 1\right)\cdot 37^{7} + \left(9 a + 27\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 32 a + 29 + \left(24 a + 21\right)\cdot 37 + \left(13 a + 3\right)\cdot 37^{2} + \left(15 a + 13\right)\cdot 37^{3} + \left(9 a + 7\right)\cdot 37^{4} + \left(11 a + 19\right)\cdot 37^{5} + \left(2 a + 19\right)\cdot 37^{6} + 28 a\cdot 37^{7} + \left(17 a + 34\right)\cdot 37^{8} +O\left(37^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5)$
$(1,2)$
$(3,6)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,2)(3,6)(4,5)$ $-3$
$3$ $2$ $(1,2)$ $1$
$3$ $2$ $(1,2)(3,6)$ $-1$
$4$ $3$ $(1,4,3)(2,5,6)$ $0$
$4$ $3$ $(1,3,4)(2,6,5)$ $0$
$4$ $6$ $(1,5,6,2,4,3)$ $0$
$4$ $6$ $(1,3,4,2,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.