Properties

Label 3.3e4_29e3.4t5.1
Dimension 3
Group $S_4$
Conductor $ 3^{4} \cdot 29^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$1975509= 3^{4} \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{4} - 87 x + 261 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 151 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 29 + 143\cdot 151 + 20\cdot 151^{2} + 20\cdot 151^{3} + 26\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 51 + 102\cdot 151 + 84\cdot 151^{2} + 107\cdot 151^{3} + 143\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 110 + 100\cdot 151 + 94\cdot 151^{2} + 147\cdot 151^{3} + 38\cdot 151^{4} +O\left(151^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 112 + 106\cdot 151 + 101\cdot 151^{2} + 26\cdot 151^{3} + 93\cdot 151^{4} +O\left(151^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.