Properties

Label 3.3e4_29.4t5.1
Dimension 3
Group $S_4$
Conductor $ 3^{4} \cdot 29 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$2349= 3^{4} \cdot 29 $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 3 x^{2} - 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 233 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 43 + 109\cdot 233 + 163\cdot 233^{2} + 123\cdot 233^{3} + 228\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 49 + 114\cdot 233 + 130\cdot 233^{2} + 71\cdot 233^{3} + 192\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 166 + 119\cdot 233 + 133\cdot 233^{2} + 194\cdot 233^{3} + 230\cdot 233^{4} +O\left(233^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 209 + 122\cdot 233 + 38\cdot 233^{2} + 76\cdot 233^{3} + 47\cdot 233^{4} +O\left(233^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.