Properties

Label 3.3e4_271e2.9t7.2c1
Dimension 3
Group $C_3^2:C_3$
Conductor $ 3^{4} \cdot 271^{2}$
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3^2:C_3$
Conductor:$5948721= 3^{4} \cdot 271^{2} $
Artin number field: Splitting field of $f= x^{9} - 3 x^{8} - 45 x^{7} + 137 x^{6} + 651 x^{5} - 1953 x^{4} - 3861 x^{3} + 11268 x^{2} + 8160 x - 22976 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3^2:C_3$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{3} + x + 14 $
Roots:
$r_{ 1 }$ $=$ $ 2 a^{2} + 8 a + 11 + \left(12 a^{2} + 7 a + 12\right)\cdot 17 + \left(9 a^{2} + 14\right)\cdot 17^{2} + \left(5 a^{2} + 16 a + 15\right)\cdot 17^{3} + \left(7 a^{2} + 5 a + 16\right)\cdot 17^{4} + \left(2 a^{2} + 15 a + 13\right)\cdot 17^{5} + \left(3 a^{2} + 9 a + 13\right)\cdot 17^{6} + \left(12 a^{2} + 10 a + 10\right)\cdot 17^{7} + \left(6 a^{2} + 6 a + 12\right)\cdot 17^{8} + \left(2 a^{2} + 3 a + 12\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 3 a^{2} + 8 a + 6 + \left(16 a^{2} + 12 a + 15\right)\cdot 17 + \left(3 a^{2} + 11 a + 10\right)\cdot 17^{2} + \left(10 a^{2} + 13 a + 7\right)\cdot 17^{3} + \left(10 a^{2} + 2 a + 13\right)\cdot 17^{4} + 16 a^{2}17^{5} + \left(a^{2} + 13\right)\cdot 17^{6} + \left(7 a^{2} + 13 a + 1\right)\cdot 17^{7} + \left(6 a^{2} + 15 a + 1\right)\cdot 17^{8} + \left(4 a^{2} + 12 a + 14\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 11 + 17 + 8\cdot 17^{2} + 4\cdot 17^{3} + 6\cdot 17^{5} + 17^{6} + 12\cdot 17^{7} + 5\cdot 17^{8} + 7\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 4 }$ $=$ $ a + 14 + \left(13 a^{2} + 3 a + 8\right)\cdot 17 + \left(9 a^{2} + 14 a + 3\right)\cdot 17^{2} + \left(15 a^{2} + 4 a + 8\right)\cdot 17^{3} + \left(14 a^{2} + 3 a + 1\right)\cdot 17^{4} + \left(13 a^{2} + 12 a + 11\right)\cdot 17^{5} + \left(3 a^{2} + 8 a + 4\right)\cdot 17^{6} + \left(5 a^{2} + 2\right)\cdot 17^{7} + \left(5 a^{2} + 16 a\right)\cdot 17^{8} + \left(6 a^{2} + 11 a + 6\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 13 a^{2} + 7 a + \left(3 a^{2} + 7 a + 14\right)\cdot 17 + \left(11 a^{2} + 14 a + 15\right)\cdot 17^{2} + \left(9 a + 3\right)\cdot 17^{3} + \left(10 a^{2} + 8 a + 15\right)\cdot 17^{4} + \left(12 a^{2} + 13 a + 15\right)\cdot 17^{5} + \left(2 a^{2} + 12 a + 3\right)\cdot 17^{6} + \left(12 a^{2} + 9 a + 1\right)\cdot 17^{7} + \left(a^{2} + 5 a + 9\right)\cdot 17^{8} + \left(6 a^{2} + 4 a + 11\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 4 a^{2} + 9 a + 11 + \left(6 a + 11\right)\cdot 17 + \left(13 a^{2} + 5 a + 5\right)\cdot 17^{2} + \left(2 a + 15\right)\cdot 17^{3} + \left(9 a^{2} + 5 a + 8\right)\cdot 17^{4} + \left(7 a^{2} + 8 a + 12\right)\cdot 17^{5} + \left(10 a^{2} + 12 a + 14\right)\cdot 17^{6} + \left(16 a^{2} + 6 a + 9\right)\cdot 17^{7} + \left(9 a^{2} + 12 a + 14\right)\cdot 17^{8} + \left(4 a^{2} + 4\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 7 }$ $=$ $ 4 + 12\cdot 17 + 6\cdot 17^{2} + 12\cdot 17^{3} + 8\cdot 17^{4} + 17^{5} + 15\cdot 17^{6} + 3\cdot 17^{7} + 9\cdot 17^{8} + 10\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 8 }$ $=$ $ 12 a^{2} + a + 12 + \left(5 a^{2} + 14 a + 2\right)\cdot 17 + \left(3 a^{2} + 4 a + 16\right)\cdot 17^{2} + \left(a^{2} + 4 a + 12\right)\cdot 17^{3} + \left(16 a^{2} + 8 a + 5\right)\cdot 17^{4} + \left(14 a^{2} + a + 5\right)\cdot 17^{5} + \left(11 a^{2} + 7 a + 8\right)\cdot 17^{6} + \left(14 a^{2} + 10 a + 12\right)\cdot 17^{7} + \left(3 a^{2} + 11 a + 10\right)\cdot 17^{8} + \left(10 a^{2} + 6\right)\cdot 17^{9} +O\left(17^{ 10 }\right)$
$r_{ 9 }$ $=$ $ 2 + 6\cdot 17 + 3\cdot 17^{2} + 4\cdot 17^{3} + 14\cdot 17^{4} + 10\cdot 17^{6} + 13\cdot 17^{7} + 4\cdot 17^{8} + 11\cdot 17^{9} +O\left(17^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(1,4,3)(2,6,9)(5,7,8)$
$(3,9,7)(4,5,6)$
$(1,2,8)(3,7,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$1$$3$$(1,8,2)(3,7,9)(4,5,6)$$3 \zeta_{3}$
$1$$3$$(1,2,8)(3,9,7)(4,6,5)$$-3 \zeta_{3} - 3$
$3$$3$$(1,4,3)(2,6,9)(5,7,8)$$0$
$3$$3$$(1,3,4)(2,9,6)(5,8,7)$$0$
$3$$3$$(1,2,8)(3,7,9)$$0$
$3$$3$$(1,8,2)(3,9,7)$$0$
$3$$3$$(1,5,3)(2,4,9)(6,7,8)$$0$
$3$$3$$(1,3,5)(2,9,4)(6,8,7)$$0$
$3$$3$$(1,6,3)(2,5,9)(4,7,8)$$0$
$3$$3$$(1,3,6)(2,9,5)(4,8,7)$$0$
The blue line marks the conjugacy class containing complex conjugation.