Properties

Label 3.3e4_239.9t20.2
Dimension 3
Group $C_3 \wr S_3 $
Conductor $ 3^{4} \cdot 239 $
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$C_3 \wr S_3 $
Conductor:$19359= 3^{4} \cdot 239 $
Artin number field: Splitting field of $f= x^{9} - 4 x^{8} + 8 x^{7} - 8 x^{6} - 4 x^{5} + 18 x^{4} - 20 x^{3} + 12 x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $C_3 \wr S_3 $
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 19.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{3} + 4 x + 64 $
Roots:
$r_{ 1 }$ $=$ $ 51 a^{2} + 29 a + 28 + \left(17 a^{2} + 57 a + 49\right)\cdot 71 + \left(10 a^{2} + 68 a + 15\right)\cdot 71^{2} + \left(37 a^{2} + 32 a + 56\right)\cdot 71^{3} + \left(52 a^{2} + 20 a + 9\right)\cdot 71^{4} + \left(37 a^{2} + 68 a + 7\right)\cdot 71^{5} + \left(10 a^{2} + 49 a + 33\right)\cdot 71^{6} + \left(66 a^{2} + 28 a + 61\right)\cdot 71^{7} + \left(a^{2} + 55 a + 6\right)\cdot 71^{8} + \left(64 a^{2} + 61 a + 15\right)\cdot 71^{9} + \left(25 a^{2} + 48 a + 14\right)\cdot 71^{10} + \left(55 a^{2} + 18 a + 7\right)\cdot 71^{11} + \left(66 a^{2} + 56 a + 6\right)\cdot 71^{12} + \left(64 a^{2} + 44 a + 17\right)\cdot 71^{13} + \left(2 a^{2} + 4 a + 22\right)\cdot 71^{14} + \left(46 a^{2} + 55 a + 56\right)\cdot 71^{15} + \left(48 a^{2} + 22 a + 16\right)\cdot 71^{16} + \left(50 a^{2} + 55 a + 37\right)\cdot 71^{17} + \left(12 a^{2} + 64 a + 49\right)\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 2 }$ $=$ $ 42 a^{2} + 21 a + 58 + \left(16 a^{2} + 40 a + 64\right)\cdot 71 + \left(50 a^{2} + 34 a + 26\right)\cdot 71^{2} + \left(16 a^{2} + 58 a + 26\right)\cdot 71^{3} + \left(7 a^{2} + 11 a + 16\right)\cdot 71^{4} + \left(25 a^{2} + 42 a + 62\right)\cdot 71^{5} + \left(42 a^{2} + 14 a + 5\right)\cdot 71^{6} + \left(42 a^{2} + 59 a + 8\right)\cdot 71^{7} + \left(31 a^{2} + 25 a + 60\right)\cdot 71^{8} + \left(47 a^{2} + 21 a + 9\right)\cdot 71^{9} + \left(5 a^{2} + 31 a + 58\right)\cdot 71^{10} + \left(59 a^{2} + 46 a + 10\right)\cdot 71^{11} + \left(36 a^{2} + 6 a + 23\right)\cdot 71^{12} + \left(61 a^{2} + 70 a + 51\right)\cdot 71^{13} + \left(46 a^{2} + 56 a + 18\right)\cdot 71^{14} + \left(36 a^{2} + 22 a + 58\right)\cdot 71^{15} + \left(69 a^{2} + 19 a + 58\right)\cdot 71^{16} + \left(55 a^{2} + 13 a + 65\right)\cdot 71^{17} + \left(11 a^{2} + 52 a + 46\right)\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 3 }$ $=$ $ 62 + 44\cdot 71 + 23\cdot 71^{2} + 31\cdot 71^{3} + 6\cdot 71^{4} + 47\cdot 71^{5} + 65\cdot 71^{6} + 30\cdot 71^{7} + 45\cdot 71^{8} + 25\cdot 71^{9} + 35\cdot 71^{10} + 44\cdot 71^{11} + 49\cdot 71^{12} + 19\cdot 71^{13} + 26\cdot 71^{14} + 25\cdot 71^{15} + 43\cdot 71^{16} + 41\cdot 71^{17} + 17\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 4 }$ $=$ $ 64 + 67\cdot 71 + 40\cdot 71^{2} + 20\cdot 71^{3} + 52\cdot 71^{4} + 12\cdot 71^{5} + 14\cdot 71^{6} + 14\cdot 71^{7} + 42\cdot 71^{8} + 70\cdot 71^{9} + 29\cdot 71^{10} + 51\cdot 71^{11} + 51\cdot 71^{12} + 52\cdot 71^{13} + 66\cdot 71^{14} + 62\cdot 71^{15} + 55\cdot 71^{17} + 11\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 5 }$ $=$ $ 20 a^{2} + 54 a + 23 + \left(32 a^{2} + 18 a + 59\right)\cdot 71 + \left(52 a^{2} + 49 a + 32\right)\cdot 71^{2} + \left(17 a^{2} + 3 a + 5\right)\cdot 71^{3} + \left(33 a^{2} + 16 a + 62\right)\cdot 71^{4} + \left(3 a^{2} + 2 a + 51\right)\cdot 71^{5} + \left(66 a^{2} + 25 a + 21\right)\cdot 71^{6} + \left(22 a^{2} + 17 a + 50\right)\cdot 71^{7} + \left(34 a^{2} + 65 a + 43\right)\cdot 71^{8} + \left(29 a^{2} + 15 a + 56\right)\cdot 71^{9} + \left(66 a^{2} + 19 a + 30\right)\cdot 71^{10} + \left(49 a^{2} + 62 a + 57\right)\cdot 71^{11} + \left(27 a^{2} + 61 a + 69\right)\cdot 71^{12} + \left(45 a^{2} + 7 a + 31\right)\cdot 71^{13} + \left(13 a^{2} + 58 a + 48\right)\cdot 71^{14} + \left(48 a^{2} + 63 a + 41\right)\cdot 71^{15} + \left(34 a^{2} + 15 a + 60\right)\cdot 71^{16} + \left(a^{2} + 58 a + 38\right)\cdot 71^{17} + \left(19 a^{2} + 58 a + 42\right)\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 6 }$ $=$ $ a^{2} + 42 a + 13 + \left(32 a^{2} + 64 a + 40\right)\cdot 71 + \left(55 a^{2} + 23 a + 41\right)\cdot 71^{2} + \left(40 a^{2} + 25 a + 18\right)\cdot 71^{3} + \left(59 a^{2} + 48 a + 52\right)\cdot 71^{4} + \left(49 a^{2} + 30 a + 15\right)\cdot 71^{5} + \left(12 a + 54\right)\cdot 71^{6} + \left(14 a^{2} + 42 a + 40\right)\cdot 71^{7} + \left(30 a^{2} + 16 a + 58\right)\cdot 71^{8} + \left(30 a^{2} + 26 a + 43\right)\cdot 71^{9} + \left(2 a^{2} + 68 a + 22\right)\cdot 71^{10} + \left(44 a^{2} + 69 a + 24\right)\cdot 71^{11} + \left(9 a^{2} + 31 a + 19\right)\cdot 71^{12} + \left(28 a^{2} + 57 a + 37\right)\cdot 71^{13} + \left(45 a^{2} + 11 a + 64\right)\cdot 71^{14} + \left(43 a^{2} + 16 a + 49\right)\cdot 71^{15} + \left(17 a^{2} + a + 28\right)\cdot 71^{16} + \left(3 a^{2} + 12 a + 5\right)\cdot 71^{17} + \left(24 a^{2} + 39 a + 56\right)\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + 67 a + 41 + \left(22 a^{2} + 11 a + 8\right)\cdot 71 + \left(39 a^{2} + 58 a + 45\right)\cdot 71^{2} + \left(36 a^{2} + 8 a + 55\right)\cdot 71^{3} + \left(30 a^{2} + 43 a + 54\right)\cdot 71^{4} + \left(42 a^{2} + 26 a + 13\right)\cdot 71^{5} + \left(33 a^{2} + 31 a + 6\right)\cdot 71^{6} + \left(5 a^{2} + 65 a + 51\right)\cdot 71^{7} + \left(5 a^{2} + 50 a + 36\right)\cdot 71^{8} + \left(65 a^{2} + 33 a + 9\right)\cdot 71^{9} + \left(69 a^{2} + 20 a + 40\right)\cdot 71^{10} + \left(32 a^{2} + 33 a + 59\right)\cdot 71^{11} + \left(6 a^{2} + 2 a + 36\right)\cdot 71^{12} + \left(35 a^{2} + 64 a + 4\right)\cdot 71^{13} + \left(10 a^{2} + 26 a + 40\right)\cdot 71^{14} + \left(57 a^{2} + 55 a + 65\right)\cdot 71^{15} + \left(37 a^{2} + 35 a + 68\right)\cdot 71^{16} + \left(13 a^{2} + 70 a + 70\right)\cdot 71^{17} + \left(40 a^{2} + 30 a + 27\right)\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 8 }$ $=$ $ 19 a^{2} + 61 + \left(21 a^{2} + 20 a + 58\right)\cdot 71 + \left(5 a^{2} + 49 a + 49\right)\cdot 71^{2} + \left(64 a^{2} + 12 a + 9\right)\cdot 71^{3} + \left(29 a^{2} + 2 a + 44\right)\cdot 71^{4} + \left(54 a^{2} + 43 a + 51\right)\cdot 71^{5} + \left(59 a^{2} + 8 a + 69\right)\cdot 71^{6} + \left(61 a^{2} + 49\right)\cdot 71^{7} + \left(38 a^{2} + 70 a + 10\right)\cdot 71^{8} + \left(47 a^{2} + 53 a + 42\right)\cdot 71^{9} + \left(42 a^{2} + 24 a + 11\right)\cdot 71^{10} + \left(42 a^{2} + 53 a + 44\right)\cdot 71^{11} + \left(65 a^{2} + 53 a + 26\right)\cdot 71^{12} + \left(48 a^{2} + 39 a + 45\right)\cdot 71^{13} + \left(22 a^{2} + 54 a + 27\right)\cdot 71^{14} + \left(52 a^{2} + 70 a + 49\right)\cdot 71^{15} + \left(4 a^{2} + 46 a + 41\right)\cdot 71^{16} + \left(17 a^{2} + 3 a + 18\right)\cdot 71^{17} + \left(34 a^{2} + 38 a + 12\right)\cdot 71^{18} +O\left(71^{ 19 }\right)$
$r_{ 9 }$ $=$ $ 9 + 32\cdot 71 + 7\cdot 71^{2} + 60\cdot 71^{3} + 56\cdot 71^{4} + 21\cdot 71^{5} + 13\cdot 71^{6} + 48\cdot 71^{7} + 50\cdot 71^{8} + 10\cdot 71^{9} + 41\cdot 71^{10} + 55\cdot 71^{11} + 24\cdot 71^{13} + 40\cdot 71^{14} + 16\cdot 71^{15} + 35\cdot 71^{16} + 21\cdot 71^{17} + 19\cdot 71^{18} +O\left(71^{ 19 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(3,4,9)$
$(1,5)(2,6)(7,8)$
$(1,8,6)$
$(2,5,7)$
$(2,3,7,4,5,9)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$9$ $2$ $(1,5)(2,6)(7,8)$ $1$ $1$
$1$ $3$ $(1,6,8)(2,7,5)(3,4,9)$ $3 \zeta_{3}$ $-3 \zeta_{3} - 3$
$1$ $3$ $(1,8,6)(2,5,7)(3,9,4)$ $-3 \zeta_{3} - 3$ $3 \zeta_{3}$
$3$ $3$ $(1,8,6)$ $2 \zeta_{3} + 1$ $-2 \zeta_{3} - 1$
$3$ $3$ $(1,6,8)$ $-2 \zeta_{3} - 1$ $2 \zeta_{3} + 1$
$3$ $3$ $(1,8,6)(2,5,7)$ $\zeta_{3} - 1$ $-\zeta_{3} - 2$
$3$ $3$ $(1,6,8)(2,7,5)$ $-\zeta_{3} - 2$ $\zeta_{3} - 1$
$3$ $3$ $(1,8,6)(2,7,5)(3,4,9)$ $\zeta_{3} + 2$ $-\zeta_{3} + 1$
$3$ $3$ $(1,6,8)(2,5,7)(3,9,4)$ $-\zeta_{3} + 1$ $\zeta_{3} + 2$
$6$ $3$ $(1,6,8)(2,5,7)$ $0$ $0$
$18$ $3$ $(1,9,2)(3,7,6)(4,5,8)$ $0$ $0$
$9$ $6$ $(1,7,8,2,6,5)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$9$ $6$ $(1,5,6,2,8,7)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$9$ $6$ $(1,8,6)(2,3,7,4,5,9)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$9$ $6$ $(1,6,8)(2,9,5,4,7,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$9$ $6$ $(1,6,8)(2,3,7,4,5,9)$ $-\zeta_{3} - 1$ $\zeta_{3}$
$9$ $6$ $(1,8,6)(2,9,5,4,7,3)$ $\zeta_{3}$ $-\zeta_{3} - 1$
$9$ $6$ $(1,9)(2,5,7)(3,6)(4,8)$ $1$ $1$
$9$ $6$ $(1,9)(2,7,5)(3,6)(4,8)$ $1$ $1$
$18$ $9$ $(1,9,2,6,3,7,8,4,5)$ $0$ $0$
$18$ $9$ $(1,2,3,8,5,9,6,7,4)$ $0$ $0$
The blue line marks the conjugacy class containing complex conjugation.