Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 2 a + \left(10 a + 8\right)\cdot 13 + \left(a + 2\right)\cdot 13^{2} + 5 a\cdot 13^{3} + \left(3 a + 1\right)\cdot 13^{4} + \left(9 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 a + 2 + \left(2 a + 3\right)\cdot 13 + \left(11 a + 7\right)\cdot 13^{2} + \left(7 a + 3\right)\cdot 13^{3} + \left(9 a + 12\right)\cdot 13^{4} + \left(3 a + 9\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 8 + 13 + 6\cdot 13^{3} + 6\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 3 + 5\cdot 13 + 11\cdot 13^{2} + 9\cdot 13^{3} + 6\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 4 a + 6 + \left(2 a + 11\right)\cdot 13 + \left(a + 2\right)\cdot 13^{2} + \left(12 a + 4\right)\cdot 13^{3} + \left(a + 4\right)\cdot 13^{4} + \left(6 a + 4\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 9 a + 10 + \left(10 a + 9\right)\cdot 13 + \left(11 a + 1\right)\cdot 13^{2} + 2\cdot 13^{3} + \left(11 a + 7\right)\cdot 13^{4} + \left(6 a + 8\right)\cdot 13^{5} +O\left(13^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5)(3,6)$ |
| $(1,5,6)(2,4,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $15$ | $2$ | $(1,6)(4,5)$ | $-1$ |
| $20$ | $3$ | $(1,5,6)(2,4,3)$ | $0$ |
| $12$ | $5$ | $(2,4,6,5,3)$ | $\zeta_{5}^{3} + \zeta_{5}^{2} + 1$ |
| $12$ | $5$ | $(2,6,3,4,5)$ | $-\zeta_{5}^{3} - \zeta_{5}^{2}$ |
The blue line marks the conjugacy class containing complex conjugation.