Properties

Label 3.3e4_197.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3^{4} \cdot 197 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$15957= 3^{4} \cdot 197 $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - x^{3} + 6 x^{2} - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even
Determinant: 1.197.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 18 + \left(13 a + 11\right)\cdot 19 + \left(a + 13\right)\cdot 19^{2} + \left(11 a + 5\right)\cdot 19^{3} + \left(18 a + 4\right)\cdot 19^{4} + \left(15 a + 11\right)\cdot 19^{5} + \left(10 a + 14\right)\cdot 19^{6} + \left(10 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 16 + 19 + 19^{2} + 7\cdot 19^{3} + 12\cdot 19^{4} + 4\cdot 19^{5} + 16\cdot 19^{6} + 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 16 a + \left(8 a + 15\right)\cdot 19 + \left(9 a + 11\right)\cdot 19^{2} + \left(2 a + 8\right)\cdot 19^{3} + \left(4 a + 9\right)\cdot 19^{4} + \left(16 a + 3\right)\cdot 19^{5} + \left(8 a + 12\right)\cdot 19^{6} + \left(14 a + 8\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 3 a + 16 + \left(10 a + 7\right)\cdot 19 + \left(9 a + 12\right)\cdot 19^{2} + \left(16 a + 1\right)\cdot 19^{3} + \left(14 a + 11\right)\cdot 19^{4} + \left(2 a + 15\right)\cdot 19^{5} + \left(10 a + 4\right)\cdot 19^{6} + \left(4 a + 14\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 13 + 8\cdot 19 + 16\cdot 19^{2} + 18\cdot 19^{3} + 7\cdot 19^{4} + 13\cdot 19^{5} + 18\cdot 19^{6} + 18\cdot 19^{7} +O\left(19^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 5 a + 13 + \left(5 a + 11\right)\cdot 19 + \left(17 a + 1\right)\cdot 19^{2} + \left(7 a + 15\right)\cdot 19^{3} + 11\cdot 19^{4} + \left(3 a + 8\right)\cdot 19^{5} + \left(8 a + 9\right)\cdot 19^{6} + \left(8 a + 6\right)\cdot 19^{7} +O\left(19^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(2,5)$
$(1,2,3)(4,6,5)$
$(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(2,5)$$-1$
$4$$3$$(1,2,3)(4,6,5)$$0$
$4$$3$$(1,3,2)(4,5,6)$$0$
$4$$6$$(1,5,4,6,2,3)$$0$
$4$$6$$(1,3,2,6,4,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.