Properties

Label 3.3e4_131.4t5.1
Dimension 3
Group $S_4$
Conductor $ 3^{4} \cdot 131 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$10611= 3^{4} \cdot 131 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 3 x^{2} - 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 20 + 33\cdot 191 + 124\cdot 191^{2} + 31\cdot 191^{3} + 142\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 55 + 114\cdot 191 + 12\cdot 191^{2} + 105\cdot 191^{3} + 8\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 141 + 86\cdot 191 + 160\cdot 191^{2} + 138\cdot 191^{3} + 119\cdot 191^{4} +O\left(191^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 167 + 147\cdot 191 + 84\cdot 191^{2} + 106\cdot 191^{3} + 111\cdot 191^{4} +O\left(191^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.