Properties

Label 3.3e4_127.6t6.1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3^{4} \cdot 127 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$10287= 3^{4} \cdot 127 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 2 x^{3} - 6 x^{2} - 6 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 8.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 13\cdot 17 + 2\cdot 17^{2} + 15\cdot 17^{3} + 17^{4} + 3\cdot 17^{5} + 3\cdot 17^{6} + 2\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 9 a + 16 + \left(14 a + 7\right)\cdot 17 + \left(2 a + 11\right)\cdot 17^{2} + \left(7 a + 10\right)\cdot 17^{3} + \left(2 a + 12\right)\cdot 17^{4} + 4 a\cdot 17^{6} + \left(7 a + 6\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 13 + 8\cdot 17 + 16\cdot 17^{2} + 3\cdot 17^{3} + 10\cdot 17^{4} + 17^{5} + 7\cdot 17^{6} + 9\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 8 a + 8 + \left(2 a + 13\right)\cdot 17 + \left(14 a + 16\right)\cdot 17^{2} + \left(9 a + 14\right)\cdot 17^{3} + \left(14 a + 7\right)\cdot 17^{4} + \left(16 a + 15\right)\cdot 17^{5} + \left(12 a + 3\right)\cdot 17^{6} + \left(9 a + 9\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 3 + \left(2 a + 6\right)\cdot 17 + 11\cdot 17^{2} + \left(14 a + 4\right)\cdot 17^{3} + \left(11 a + 10\right)\cdot 17^{4} + \left(2 a + 2\right)\cdot 17^{5} + \left(2 a + 10\right)\cdot 17^{6} + \left(9 a + 8\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 10 + \left(14 a + 1\right)\cdot 17 + \left(16 a + 9\right)\cdot 17^{2} + \left(2 a + 1\right)\cdot 17^{3} + \left(5 a + 8\right)\cdot 17^{4} + \left(14 a + 10\right)\cdot 17^{5} + \left(14 a + 9\right)\cdot 17^{6} + \left(7 a + 15\right)\cdot 17^{7} +O\left(17^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,3)$
$(5,6)$
$(1,2,5)(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,4)(5,6)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(2,4)$ $-1$
$4$ $3$ $(1,2,5)(3,4,6)$ $0$
$4$ $3$ $(1,5,2)(3,6,4)$ $0$
$4$ $6$ $(1,4,6,3,2,5)$ $0$
$4$ $6$ $(1,5,2,3,6,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.