Properties

Label 3.3e4_11e2.6t8.5
Dimension 3
Group $S_4$
Conductor $ 3^{4} \cdot 11^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$9801= 3^{4} \cdot 11^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 6 x^{4} + 4 x^{3} + 6 x^{2} - 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 18 a + 12 + \left(14 a + 8\right)\cdot 19 + \left(12 a + 13\right)\cdot 19^{2} + \left(15 a + 11\right)\cdot 19^{3} + \left(5 a + 16\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 16 + 7\cdot 19 + 10\cdot 19^{2} + 12\cdot 19^{3} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 8 + \left(4 a + 3\right)\cdot 19 + \left(6 a + 2\right)\cdot 19^{2} + \left(11 a + 18\right)\cdot 19^{3} + \left(12 a + 9\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ a + 7 + \left(14 a + 9\right)\cdot 19 + \left(12 a + 3\right)\cdot 19^{2} + \left(7 a + 4\right)\cdot 19^{3} + \left(6 a + 11\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 3\cdot 19 + 16\cdot 19^{2} + 14\cdot 19^{3} + 11\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ a + 11 + \left(4 a + 5\right)\cdot 19 + \left(6 a + 11\right)\cdot 19^{2} + \left(3 a + 14\right)\cdot 19^{3} + \left(13 a + 6\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(2,5)(3,4)$
$(1,6)(2,5)$
$(1,4,6,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,6)(2,5)$ $-1$
$6$ $2$ $(1,3)(2,5)(4,6)$ $-1$
$8$ $3$ $(1,4,2)(3,5,6)$ $0$
$6$ $4$ $(1,3,6,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.