Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 107 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 11 + 21\cdot 107 + 99\cdot 107^{2} + 57\cdot 107^{3} + 20\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 46 + 54\cdot 107 + 72\cdot 107^{2} + 97\cdot 107^{3} + 53\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 61 + 78\cdot 107 + 56\cdot 107^{2} + 82\cdot 107^{3} + 35\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 97 + 59\cdot 107 + 92\cdot 107^{2} + 82\cdot 107^{3} + 103\cdot 107^{4} +O\left(107^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $4$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.