Properties

Label 3.3e4_109.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3^{4} \cdot 109 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$8829= 3^{4} \cdot 109 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{3} - 6 x^{2} - 9 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Even
Determinant: 1.109.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 64 a + 30 + \left(13 a + 34\right)\cdot 71 + \left(48 a + 57\right)\cdot 71^{2} + \left(15 a + 53\right)\cdot 71^{3} + \left(33 a + 56\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 7 a + 16 + \left(57 a + 69\right)\cdot 71 + \left(22 a + 68\right)\cdot 71^{2} + \left(55 a + 36\right)\cdot 71^{3} + \left(37 a + 36\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 68 a + 66 + \left(12 a + 16\right)\cdot 71 + \left(2 a + 14\right)\cdot 71^{2} + \left(14 a + 37\right)\cdot 71^{3} + \left(18 a + 70\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 69 + 64\cdot 71 + 11\cdot 71^{2} + 58\cdot 71^{3} + 58\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 43 + 52\cdot 71 + 54\cdot 71^{2} + 34\cdot 71^{3} + 39\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 3 a + 60 + \left(58 a + 45\right)\cdot 71 + \left(68 a + 5\right)\cdot 71^{2} + \left(56 a + 63\right)\cdot 71^{3} + \left(52 a + 21\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)$
$(4,5)$
$(3,6)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,2)(3,6)(4,5)$$-3$
$3$$2$$(3,6)$$1$
$3$$2$$(1,2)(3,6)$$-1$
$4$$3$$(1,4,3)(2,5,6)$$0$
$4$$3$$(1,3,4)(2,6,5)$$0$
$4$$6$$(1,4,3,2,5,6)$$0$
$4$$6$$(1,6,5,2,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.