Properties

Label 3.3e3_7e2_211.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 7^{2} \cdot 211 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$279153= 3^{3} \cdot 7^{2} \cdot 211 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 9 x^{4} + 23 x^{3} - 660 x^{2} + 648 x - 4523 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 2 a + 18 + \left(13 a + 6\right)\cdot 23 + \left(22 a + 2\right)\cdot 23^{2} + \left(12 a + 16\right)\cdot 23^{3} + \left(20 a + 13\right)\cdot 23^{4} + \left(17 a + 2\right)\cdot 23^{5} + \left(19 a + 20\right)\cdot 23^{6} + \left(22 a + 5\right)\cdot 23^{7} + \left(19 a + 15\right)\cdot 23^{8} + \left(10 a + 15\right)\cdot 23^{9} + \left(7 a + 10\right)\cdot 23^{10} + \left(16 a + 6\right)\cdot 23^{11} + \left(13 a + 16\right)\cdot 23^{12} + \left(7 a + 14\right)\cdot 23^{13} + \left(10 a + 18\right)\cdot 23^{14} + \left(9 a + 10\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 5 + 23^{2} + 22\cdot 23^{3} + 22\cdot 23^{4} + 10\cdot 23^{5} + 10\cdot 23^{6} + 13\cdot 23^{7} + 2\cdot 23^{8} + 21\cdot 23^{9} + 12\cdot 23^{10} + 5\cdot 23^{11} + 5\cdot 23^{12} + 19\cdot 23^{13} + 6\cdot 23^{14} + 5\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 22 + \left(9 a + 7\right)\cdot 23 + 11\cdot 23^{2} + \left(10 a + 19\right)\cdot 23^{3} + \left(2 a + 18\right)\cdot 23^{4} + \left(5 a + 17\right)\cdot 23^{5} + \left(3 a + 18\right)\cdot 23^{6} + 8\cdot 23^{7} + \left(3 a + 9\right)\cdot 23^{8} + \left(12 a + 17\right)\cdot 23^{9} + \left(15 a + 14\right)\cdot 23^{10} + \left(6 a + 8\right)\cdot 23^{11} + \left(9 a + 4\right)\cdot 23^{12} + \left(15 a + 16\right)\cdot 23^{13} + \left(12 a + 8\right)\cdot 23^{14} + \left(13 a + 19\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 6 + \left(9 a + 16\right)\cdot 23 + 20\cdot 23^{2} + \left(10 a + 6\right)\cdot 23^{3} + \left(2 a + 9\right)\cdot 23^{4} + \left(5 a + 20\right)\cdot 23^{5} + \left(3 a + 2\right)\cdot 23^{6} + 17\cdot 23^{7} + \left(3 a + 7\right)\cdot 23^{8} + \left(12 a + 7\right)\cdot 23^{9} + \left(15 a + 12\right)\cdot 23^{10} + \left(6 a + 16\right)\cdot 23^{11} + \left(9 a + 6\right)\cdot 23^{12} + \left(15 a + 8\right)\cdot 23^{13} + \left(12 a + 4\right)\cdot 23^{14} + \left(13 a + 12\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 2 a + 2 + \left(13 a + 15\right)\cdot 23 + \left(22 a + 11\right)\cdot 23^{2} + \left(12 a + 3\right)\cdot 23^{3} + \left(20 a + 4\right)\cdot 23^{4} + \left(17 a + 5\right)\cdot 23^{5} + \left(19 a + 4\right)\cdot 23^{6} + \left(22 a + 14\right)\cdot 23^{7} + \left(19 a + 13\right)\cdot 23^{8} + \left(10 a + 5\right)\cdot 23^{9} + \left(7 a + 8\right)\cdot 23^{10} + \left(16 a + 14\right)\cdot 23^{11} + \left(13 a + 18\right)\cdot 23^{12} + \left(7 a + 6\right)\cdot 23^{13} + \left(10 a + 14\right)\cdot 23^{14} + \left(9 a + 3\right)\cdot 23^{15} +O\left(23^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 19 + 22\cdot 23 + 21\cdot 23^{2} + 12\cdot 23^{5} + 12\cdot 23^{6} + 9\cdot 23^{7} + 20\cdot 23^{8} + 23^{9} + 10\cdot 23^{10} + 17\cdot 23^{11} + 17\cdot 23^{12} + 3\cdot 23^{13} + 16\cdot 23^{14} + 17\cdot 23^{15} +O\left(23^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,6)$
$(1,4)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-3$
$3$ $2$ $(3,5)$ $1$
$3$ $2$ $(1,4)(3,5)$ $-1$
$6$ $2$ $(1,2)(4,6)$ $-1$
$6$ $2$ $(1,2)(3,5)(4,6)$ $1$
$8$ $3$ $(1,2,3)(4,6,5)$ $0$
$6$ $4$ $(1,3,4,5)$ $-1$
$6$ $4$ $(1,4)(2,3,6,5)$ $1$
$8$ $6$ $(1,2,3,4,6,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.