Properties

Label 3.3e3_7e2_13.6t6.1c1
Dimension 3
Group $A_4\times C_2$
Conductor $ 3^{3} \cdot 7^{2} \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$A_4\times C_2$
Conductor:$17199= 3^{3} \cdot 7^{2} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 4 x^{4} + 12 x^{3} - 3 x^{2} - 16 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_4\times C_2$
Parity: Odd
Determinant: 1.3_13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 6 a + 19 + \left(35 a + 6\right)\cdot 41 + \left(36 a + 22\right)\cdot 41^{2} + \left(22 a + 38\right)\cdot 41^{3} + \left(5 a + 17\right)\cdot 41^{4} + \left(21 a + 33\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 11 + 15\cdot 41 + 25\cdot 41^{2} + 16\cdot 41^{3} + 27\cdot 41^{4} + 19\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 40 a + \left(40 a + 13\right)\cdot 41 + \left(36 a + 13\right)\cdot 41^{2} + \left(34 a + 33\right)\cdot 41^{3} + \left(33 a + 12\right)\cdot 41^{4} + \left(40 a + 30\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 4 }$ $=$ $ a + 38 + 13\cdot 41 + \left(4 a + 1\right)\cdot 41^{2} + \left(6 a + 19\right)\cdot 41^{3} + \left(7 a + 38\right)\cdot 41^{4} + 36\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 35 a + 37 + \left(5 a + 23\right)\cdot 41 + \left(4 a + 15\right)\cdot 41^{2} + \left(18 a + 29\right)\cdot 41^{3} + \left(35 a + 11\right)\cdot 41^{4} + \left(19 a + 9\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 20 + 9\cdot 41 + 4\cdot 41^{2} + 27\cdot 41^{3} + 14\cdot 41^{4} + 34\cdot 41^{5} +O\left(41^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)$
$(2,6)$
$(3,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,6)(3,4)$$-3$
$3$$2$$(3,4)$$1$
$3$$2$$(1,5)(3,4)$$-1$
$4$$3$$(1,2,3)(4,5,6)$$0$
$4$$3$$(1,3,2)(4,6,5)$$0$
$4$$6$$(1,2,3,5,6,4)$$0$
$4$$6$$(1,4,6,5,3,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.