Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 6 a + 19 + \left(35 a + 6\right)\cdot 41 + \left(36 a + 22\right)\cdot 41^{2} + \left(22 a + 38\right)\cdot 41^{3} + \left(5 a + 17\right)\cdot 41^{4} + \left(21 a + 33\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 + 15\cdot 41 + 25\cdot 41^{2} + 16\cdot 41^{3} + 27\cdot 41^{4} + 19\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 40 a + \left(40 a + 13\right)\cdot 41 + \left(36 a + 13\right)\cdot 41^{2} + \left(34 a + 33\right)\cdot 41^{3} + \left(33 a + 12\right)\cdot 41^{4} + \left(40 a + 30\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a + 38 + 13\cdot 41 + \left(4 a + 1\right)\cdot 41^{2} + \left(6 a + 19\right)\cdot 41^{3} + \left(7 a + 38\right)\cdot 41^{4} + 36\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 35 a + 37 + \left(5 a + 23\right)\cdot 41 + \left(4 a + 15\right)\cdot 41^{2} + \left(18 a + 29\right)\cdot 41^{3} + \left(35 a + 11\right)\cdot 41^{4} + \left(19 a + 9\right)\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 20 + 9\cdot 41 + 4\cdot 41^{2} + 27\cdot 41^{3} + 14\cdot 41^{4} + 34\cdot 41^{5} +O\left(41^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,5)$ |
| $(2,6)$ |
| $(3,4)$ |
| $(1,2,3)(4,5,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,5)(2,6)(3,4)$ |
$-3$ |
| $3$ |
$2$ |
$(3,4)$ |
$1$ |
| $3$ |
$2$ |
$(1,5)(3,4)$ |
$-1$ |
| $4$ |
$3$ |
$(1,2,3)(4,5,6)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,2)(4,6,5)$ |
$0$ |
| $4$ |
$6$ |
$(1,2,3,5,6,4)$ |
$0$ |
| $4$ |
$6$ |
$(1,4,6,5,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.