Properties

Label 3.3e3_5e2_29.9t12.2c1
Dimension 3
Group $(C_3^2:C_3):C_2$
Conductor $ 3^{3} \cdot 5^{2} \cdot 29 $
Root number not computed
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$(C_3^2:C_3):C_2$
Conductor:$19575= 3^{3} \cdot 5^{2} \cdot 29 $
Artin number field: Splitting field of $f= x^{9} - 2 x^{8} + x^{5} - 3 x^{3} + 4 x^{2} - 12 x + 8 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $(C_3^2:C_3):C_2$
Parity: Odd
Determinant: 1.3_29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{3} + x + 35 $
Roots:
$r_{ 1 }$ $=$ $ 20 a^{2} + 11 a + 6 + \left(24 a^{2} + 5 a + 37\right)\cdot 41 + \left(38 a^{2} + 34 a + 28\right)\cdot 41^{2} + \left(13 a^{2} + 34 a + 37\right)\cdot 41^{3} + \left(16 a^{2} + 12 a + 23\right)\cdot 41^{4} + \left(6 a^{2} + 5 a + 2\right)\cdot 41^{5} + \left(25 a^{2} + 27 a + 34\right)\cdot 41^{6} + \left(32 a^{2} + 15 a + 38\right)\cdot 41^{7} + \left(7 a^{2} + 16 a + 15\right)\cdot 41^{8} + \left(6 a^{2} + 12 a + 19\right)\cdot 41^{9} + \left(12 a^{2} + 40 a + 1\right)\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 39 + 15\cdot 41 + 31\cdot 41^{2} + 23\cdot 41^{3} + 30\cdot 41^{4} + 22\cdot 41^{6} + 8\cdot 41^{7} + 22\cdot 41^{8} + 34\cdot 41^{9} + 6\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 10 + 31\cdot 41 + 33\cdot 41^{2} + 20\cdot 41^{3} + 35\cdot 41^{4} + 14\cdot 41^{5} + 37\cdot 41^{6} + 36\cdot 41^{7} + 14\cdot 41^{8} + 39\cdot 41^{9} + 11\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 23 a^{2} + 31 a + 8 + \left(31 a^{2} + 16 a + 28\right)\cdot 41 + \left(3 a^{2} + 15 a + 5\right)\cdot 41^{2} + \left(21 a^{2} + 8 a + 15\right)\cdot 41^{3} + \left(28 a + 13\right)\cdot 41^{4} + \left(3 a^{2} + 20 a\right)\cdot 41^{5} + \left(23 a^{2} + 14 a + 19\right)\cdot 41^{6} + \left(21 a^{2} + 7 a + 31\right)\cdot 41^{7} + \left(32 a^{2} + 27 a + 18\right)\cdot 41^{8} + \left(32 a^{2} + 3 a + 23\right)\cdot 41^{9} + \left(7 a^{2} + 23 a + 39\right)\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 9 a^{2} + 24 a + 40 + \left(17 a^{2} + 31 a + 1\right)\cdot 41 + \left(16 a^{2} + 6 a + 12\right)\cdot 41^{2} + \left(36 a^{2} + 32 a + 23\right)\cdot 41^{3} + \left(19 a^{2} + 40 a + 39\right)\cdot 41^{4} + \left(16 a^{2} + 4 a + 24\right)\cdot 41^{5} + \left(7 a^{2} + 7 a + 10\right)\cdot 41^{6} + \left(36 a^{2} + 9 a + 39\right)\cdot 41^{7} + \left(4 a^{2} + 22 a + 2\right)\cdot 41^{8} + \left(14 a^{2} + 15 a + 40\right)\cdot 41^{9} + \left(33 a^{2} + 32 a + 21\right)\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 37 + 4\cdot 41^{2} + 37\cdot 41^{3} + 20\cdot 41^{4} + 29\cdot 41^{5} + 35\cdot 41^{6} + 21\cdot 41^{7} + 13\cdot 41^{8} + 34\cdot 41^{9} + 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 7 }$ $=$ $ 39 a^{2} + 40 a + 5 + \left(25 a^{2} + 18 a + 38\right)\cdot 41 + \left(39 a^{2} + 32 a + 15\right)\cdot 41^{2} + \left(5 a^{2} + 38 a + 32\right)\cdot 41^{3} + \left(24 a^{2} + 40 a + 1\right)\cdot 41^{4} + \left(31 a^{2} + 14 a + 33\right)\cdot 41^{5} + \left(33 a^{2} + 40 a + 39\right)\cdot 41^{6} + \left(27 a^{2} + 17 a + 21\right)\cdot 41^{7} + \left(38 a + 38\right)\cdot 41^{8} + \left(2 a^{2} + 24 a + 2\right)\cdot 41^{9} + \left(21 a^{2} + 18 a + 21\right)\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 8 }$ $=$ $ 17 a^{2} + 23 a + 18 + \left(30 a^{2} + 14 a + 24\right)\cdot 41 + \left(34 a^{2} + 31 a + 10\right)\cdot 41^{2} + \left(40 a^{2} + 18 a + 26\right)\cdot 41^{3} + \left(9 a^{2} + 6 a + 5\right)\cdot 41^{4} + \left(28 a^{2} + 38 a + 19\right)\cdot 41^{5} + \left(3 a^{2} + 3 a + 35\right)\cdot 41^{6} + \left(a^{2} + 21 a + 15\right)\cdot 41^{7} + \left(9 a^{2} + 36 a + 19\right)\cdot 41^{8} + \left(26 a^{2} + 33 a + 34\right)\cdot 41^{9} + \left(34 a^{2} + a + 22\right)\cdot 41^{10} +O\left(41^{ 11 }\right)$
$r_{ 9 }$ $=$ $ 15 a^{2} + 35 a + 3 + \left(34 a^{2} + 35 a + 27\right)\cdot 41 + \left(30 a^{2} + 2 a + 21\right)\cdot 41^{2} + \left(4 a^{2} + 31 a + 29\right)\cdot 41^{3} + \left(11 a^{2} + 34 a + 33\right)\cdot 41^{4} + \left(37 a^{2} + 38 a + 38\right)\cdot 41^{5} + \left(29 a^{2} + 29 a + 11\right)\cdot 41^{6} + \left(3 a^{2} + 10 a + 31\right)\cdot 41^{7} + \left(27 a^{2} + 23 a + 17\right)\cdot 41^{8} + \left(32 a + 17\right)\cdot 41^{9} + \left(14 a^{2} + 6 a + 36\right)\cdot 41^{10} +O\left(41^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 9 }$

Cycle notation
$(2,8)(3,5)(6,9)$
$(1,8,2)(3,7,5)(4,9,6)$
$(1,7,4)(2,3,6)(5,9,8)$
$(2,6,3)(5,9,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 9 }$ Character value
$1$$1$$()$$3$
$9$$2$$(2,8)(3,5)(6,9)$$1$
$1$$3$$(1,7,4)(2,3,6)(5,9,8)$$3 \zeta_{3}$
$1$$3$$(1,4,7)(2,6,3)(5,8,9)$$-3 \zeta_{3} - 3$
$6$$3$$(1,8,2)(3,7,5)(4,9,6)$$0$
$6$$3$$(1,5,2)(3,7,9)(4,8,6)$$0$
$6$$3$$(1,9,2)(3,7,8)(4,5,6)$$0$
$6$$3$$(2,6,3)(5,9,8)$$0$
$9$$6$$(1,7,4)(2,5,6,8,3,9)$$\zeta_{3}$
$9$$6$$(1,4,7)(2,9,3,8,6,5)$$-\zeta_{3} - 1$
The blue line marks the conjugacy class containing complex conjugation.