Properties

Label 3.3e3_5e2_167e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 5^{2} \cdot 167^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$18825075= 3^{3} \cdot 5^{2} \cdot 167^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 72 x^{4} - 139 x^{3} + 759 x^{2} - 690 x + 1225 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 13.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 54 a + 60 + \left(47 a + 31\right)\cdot 67 + \left(45 a + 66\right)\cdot 67^{2} + \left(18 a + 18\right)\cdot 67^{3} + \left(64 a + 48\right)\cdot 67^{4} + \left(36 a + 58\right)\cdot 67^{5} + \left(30 a + 57\right)\cdot 67^{6} + \left(35 a + 44\right)\cdot 67^{7} + \left(16 a + 51\right)\cdot 67^{8} + \left(48 a + 45\right)\cdot 67^{9} + \left(47 a + 62\right)\cdot 67^{10} + \left(17 a + 21\right)\cdot 67^{11} + \left(59 a + 24\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 2 }$ $=$ $ 38 + 22\cdot 67 + 61\cdot 67^{2} + 26\cdot 67^{3} + 50\cdot 67^{4} + 6\cdot 67^{5} + 26\cdot 67^{6} + 38\cdot 67^{7} + 65\cdot 67^{8} + 20\cdot 67^{9} + 49\cdot 67^{10} + 54\cdot 67^{11} + 47\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 3 }$ $=$ $ 13 a + 8 + \left(19 a + 35\right)\cdot 67 + 21 a\cdot 67^{2} + \left(48 a + 48\right)\cdot 67^{3} + \left(2 a + 18\right)\cdot 67^{4} + \left(30 a + 8\right)\cdot 67^{5} + \left(36 a + 9\right)\cdot 67^{6} + \left(31 a + 22\right)\cdot 67^{7} + \left(50 a + 15\right)\cdot 67^{8} + \left(18 a + 21\right)\cdot 67^{9} + \left(19 a + 4\right)\cdot 67^{10} + \left(49 a + 45\right)\cdot 67^{11} + \left(7 a + 42\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 4 }$ $=$ $ 45 a + 11 + \left(66 a + 23\right)\cdot 67 + \left(16 a + 66\right)\cdot 67^{2} + \left(45 a + 51\right)\cdot 67^{3} + \left(32 a + 57\right)\cdot 67^{4} + \left(47 a + 21\right)\cdot 67^{5} + 22\cdot 67^{6} + \left(31 a + 5\right)\cdot 67^{7} + \left(33 a + 49\right)\cdot 67^{8} + \left(34 a + 14\right)\cdot 67^{9} + \left(3 a + 10\right)\cdot 67^{10} + \left(29 a + 44\right)\cdot 67^{11} + \left(12 a + 56\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 5 }$ $=$ $ 22 a + 57 + 43\cdot 67 + 50 a\cdot 67^{2} + \left(21 a + 15\right)\cdot 67^{3} + \left(34 a + 9\right)\cdot 67^{4} + \left(19 a + 45\right)\cdot 67^{5} + \left(66 a + 44\right)\cdot 67^{6} + \left(35 a + 61\right)\cdot 67^{7} + \left(33 a + 17\right)\cdot 67^{8} + \left(32 a + 52\right)\cdot 67^{9} + \left(63 a + 56\right)\cdot 67^{10} + \left(37 a + 22\right)\cdot 67^{11} + \left(54 a + 10\right)\cdot 67^{12} +O\left(67^{ 13 }\right)$
$r_{ 6 }$ $=$ $ 30 + 44\cdot 67 + 5\cdot 67^{2} + 40\cdot 67^{3} + 16\cdot 67^{4} + 60\cdot 67^{5} + 40\cdot 67^{6} + 28\cdot 67^{7} + 67^{8} + 46\cdot 67^{9} + 17\cdot 67^{10} + 12\cdot 67^{11} + 19\cdot 67^{12} +O\left(67^{ 13 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,4)(3,5)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,6)(4,5)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(4,5)$ $-1$
$6$ $2$ $(2,4)(5,6)$ $1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $-1$
$8$ $3$ $(1,4,2)(3,5,6)$ $0$
$6$ $4$ $(1,5,3,4)$ $1$
$6$ $4$ $(1,3)(2,4,6,5)$ $-1$
$8$ $6$ $(1,5,6,3,4,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.