Properties

Label 3.3e3_367e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 367^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3636603= 3^{3} \cdot 367^{2} $
Artin number field: Splitting field of $f= x^{6} + 8 x^{4} + 12 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 2\cdot 31 + 4\cdot 31^{2} + 7\cdot 31^{3} + 8\cdot 31^{4} + 22\cdot 31^{5} + 18\cdot 31^{7} + 9\cdot 31^{8} + 29\cdot 31^{9} + 29\cdot 31^{10} + 5\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 12 a + 19 + \left(8 a + 28\right)\cdot 31 + \left(25 a + 9\right)\cdot 31^{2} + \left(17 a + 10\right)\cdot 31^{3} + \left(30 a + 9\right)\cdot 31^{4} + \left(21 a + 24\right)\cdot 31^{5} + \left(3 a + 22\right)\cdot 31^{6} + \left(3 a + 29\right)\cdot 31^{7} + \left(12 a + 4\right)\cdot 31^{8} + \left(8 a + 13\right)\cdot 31^{9} + \left(11 a + 8\right)\cdot 31^{10} + \left(4 a + 1\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 29 + \left(23 a + 8\right)\cdot 31 + \left(28 a + 29\right)\cdot 31^{2} + \left(15 a + 13\right)\cdot 31^{3} + \left(27 a + 11\right)\cdot 31^{4} + \left(30 a + 29\right)\cdot 31^{5} + \left(4 a + 25\right)\cdot 31^{6} + \left(27 a + 21\right)\cdot 31^{7} + 12 a\cdot 31^{8} + \left(11 a + 26\right)\cdot 31^{9} + \left(19 a + 1\right)\cdot 31^{10} + \left(28 a + 12\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 28 + 28\cdot 31 + 26\cdot 31^{2} + 23\cdot 31^{3} + 22\cdot 31^{4} + 8\cdot 31^{5} + 30\cdot 31^{6} + 12\cdot 31^{7} + 21\cdot 31^{8} + 31^{9} + 31^{10} + 25\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 19 a + 12 + \left(22 a + 2\right)\cdot 31 + \left(5 a + 21\right)\cdot 31^{2} + \left(13 a + 20\right)\cdot 31^{3} + 21\cdot 31^{4} + \left(9 a + 6\right)\cdot 31^{5} + \left(27 a + 8\right)\cdot 31^{6} + \left(27 a + 1\right)\cdot 31^{7} + \left(18 a + 26\right)\cdot 31^{8} + \left(22 a + 17\right)\cdot 31^{9} + \left(19 a + 22\right)\cdot 31^{10} + \left(26 a + 29\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 29 a + 2 + \left(7 a + 22\right)\cdot 31 + \left(2 a + 1\right)\cdot 31^{2} + \left(15 a + 17\right)\cdot 31^{3} + \left(3 a + 19\right)\cdot 31^{4} + 31^{5} + \left(26 a + 5\right)\cdot 31^{6} + \left(3 a + 9\right)\cdot 31^{7} + \left(18 a + 30\right)\cdot 31^{8} + \left(19 a + 4\right)\cdot 31^{9} + \left(11 a + 29\right)\cdot 31^{10} + \left(2 a + 18\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(4,5)$
$(1,4)$
$(1,2,3)(4,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,5)(3,6)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(2,5)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $-1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $1$
$8$ $3$ $(1,2,3)(4,5,6)$ $0$
$6$ $4$ $(1,5,4,2)$ $-1$
$6$ $4$ $(1,4)(2,6,5,3)$ $1$
$8$ $6$ $(1,5,6,4,2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.