Properties

Label 3.3e3_367.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 3^{3} \cdot 367 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$9909= 3^{3} \cdot 367 $
Artin number field: Splitting field of $f= x^{4} - 6 x^{2} - 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.3_367.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 263 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 47 + 216\cdot 263 + 96\cdot 263^{2} + 216\cdot 263^{3} + 62\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 148 + 254\cdot 263 + 190\cdot 263^{2} + 25\cdot 263^{3} + 178\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 149 + 219\cdot 263 + 102\cdot 263^{2} + 238\cdot 263^{3} + 169\cdot 263^{4} +O\left(263^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 182 + 98\cdot 263 + 135\cdot 263^{2} + 45\cdot 263^{3} + 115\cdot 263^{4} +O\left(263^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.