Properties

Label 3.3e3_257.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 257 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$6939= 3^{3} \cdot 257 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{4} + 4 x^{3} + 4 x^{2} - 6 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3_257.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 11 + \left(14 a + 10\right)\cdot 19 + \left(7 a + 3\right)\cdot 19^{2} + \left(16 a + 5\right)\cdot 19^{3} + \left(18 a + 8\right)\cdot 19^{4} + \left(9 a + 8\right)\cdot 19^{5} + \left(6 a + 18\right)\cdot 19^{6} + \left(13 a + 15\right)\cdot 19^{7} + \left(4 a + 2\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 8 a + \left(18 a + 4\right)\cdot 19 + \left(5 a + 4\right)\cdot 19^{2} + 2\cdot 19^{3} + \left(a + 9\right)\cdot 19^{4} + \left(5 a + 14\right)\cdot 19^{5} + \left(18 a + 9\right)\cdot 19^{6} + \left(16 a + 16\right)\cdot 19^{7} + 16\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 8 + 14\cdot 19 + \left(13 a + 10\right)\cdot 19^{2} + \left(18 a + 15\right)\cdot 19^{3} + \left(17 a + 9\right)\cdot 19^{4} + \left(13 a + 18\right)\cdot 19^{5} + 3\cdot 19^{6} + \left(2 a + 15\right)\cdot 19^{7} + 18 a\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 9 + 11\cdot 19 + 18\cdot 19^{2} + 19^{3} + 4\cdot 19^{4} + 11\cdot 19^{5} + 8\cdot 19^{6} + 10\cdot 19^{7} +O\left(19^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 3 a + 8 + \left(4 a + 9\right)\cdot 19 + \left(11 a + 15\right)\cdot 19^{2} + \left(2 a + 13\right)\cdot 19^{3} + 10\cdot 19^{4} + \left(9 a + 18\right)\cdot 19^{5} + \left(12 a + 14\right)\cdot 19^{6} + \left(5 a + 3\right)\cdot 19^{7} + \left(14 a + 13\right)\cdot 19^{8} +O\left(19^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 3 + 7\cdot 19 + 4\cdot 19^{2} + 18\cdot 19^{3} + 14\cdot 19^{4} + 4\cdot 19^{5} + 19^{6} + 14\cdot 19^{7} + 3\cdot 19^{8} +O\left(19^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)$
$(1,2)(3,5)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,5)(4,6)$$-3$
$3$$2$$(1,3)(2,5)$$-1$
$3$$2$$(1,3)$$1$
$6$$2$$(1,2)(3,5)$$1$
$6$$2$$(1,3)(2,4)(5,6)$$-1$
$8$$3$$(1,4,2)(3,6,5)$$0$
$6$$4$$(1,5,3,2)$$1$
$6$$4$$(1,5,3,2)(4,6)$$-1$
$8$$6$$(1,5,6,3,2,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.