Properties

Label 3.3e3_241.4t5.1
Dimension 3
Group $S_4$
Conductor $ 3^{3} \cdot 241 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6507= 3^{3} \cdot 241 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 4 x - 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 149 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 11 + 76\cdot 149 + 44\cdot 149^{2} + 121\cdot 149^{3} + 101\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 + 138\cdot 149 + 144\cdot 149^{2} + 92\cdot 149^{3} + 59\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 49 + 53\cdot 149 + 88\cdot 149^{2} + 28\cdot 149^{3} + 96\cdot 149^{4} +O\left(149^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 76 + 30\cdot 149 + 20\cdot 149^{2} + 55\cdot 149^{3} + 40\cdot 149^{4} +O\left(149^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.