Properties

Label 3.3e3_23_43e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 23 \cdot 43^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$1148229= 3^{3} \cdot 23 \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 5 x^{4} + 80 x^{3} + 73 x^{2} - 1533 x - 17123 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.3_23.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 83 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 83 }$: $ x^{2} + 82 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 1 + 49\cdot 83 + 5\cdot 83^{2} + 61\cdot 83^{3} + 24\cdot 83^{4} + 75\cdot 83^{5} + 2\cdot 83^{6} + 10\cdot 83^{7} + 45\cdot 83^{8} + 82\cdot 83^{9} + 48\cdot 83^{10} + 48\cdot 83^{11} +O\left(83^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 74 + \left(63 a + 47\right)\cdot 83 + \left(22 a + 53\right)\cdot 83^{2} + \left(32 a + 40\right)\cdot 83^{3} + \left(68 a + 3\right)\cdot 83^{4} + \left(61 a + 65\right)\cdot 83^{5} + \left(30 a + 41\right)\cdot 83^{6} + \left(45 a + 54\right)\cdot 83^{7} + \left(79 a + 64\right)\cdot 83^{8} + \left(51 a + 81\right)\cdot 83^{9} + \left(53 a + 62\right)\cdot 83^{10} + \left(7 a + 81\right)\cdot 83^{11} +O\left(83^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 56 + 5\cdot 83 + 54\cdot 83^{2} + 2\cdot 83^{3} + 6\cdot 83^{4} + 55\cdot 83^{5} + 30\cdot 83^{6} + 67\cdot 83^{7} + 23\cdot 83^{8} + 77\cdot 83^{9} + 27\cdot 83^{10} + 45\cdot 83^{11} +O\left(83^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 37 a + 42 + \left(58 a + 52\right)\cdot 83 + \left(76 a + 10\right)\cdot 83^{2} + \left(56 a + 57\right)\cdot 83^{3} + \left(9 a + 69\right)\cdot 83^{4} + \left(27 a + 71\right)\cdot 83^{5} + \left(33 a + 36\right)\cdot 83^{6} + \left(49 a + 57\right)\cdot 83^{7} + \left(27 a + 60\right)\cdot 83^{8} + \left(16 a + 23\right)\cdot 83^{9} + \left(4 a + 28\right)\cdot 83^{10} + \left(39 a + 1\right)\cdot 83^{11} +O\left(83^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 46 a + 79 + \left(24 a + 73\right)\cdot 83 + \left(6 a + 28\right)\cdot 83^{2} + \left(26 a + 37\right)\cdot 83^{3} + \left(73 a + 22\right)\cdot 83^{4} + \left(55 a + 6\right)\cdot 83^{5} + \left(49 a + 43\right)\cdot 83^{6} + \left(33 a + 73\right)\cdot 83^{7} + \left(55 a + 38\right)\cdot 83^{8} + \left(66 a + 12\right)\cdot 83^{9} + \left(78 a + 16\right)\cdot 83^{10} + \left(43 a + 36\right)\cdot 83^{11} +O\left(83^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 75 a + 82 + \left(19 a + 19\right)\cdot 83 + \left(60 a + 13\right)\cdot 83^{2} + \left(50 a + 50\right)\cdot 83^{3} + \left(14 a + 39\right)\cdot 83^{4} + \left(21 a + 58\right)\cdot 83^{5} + \left(52 a + 10\right)\cdot 83^{6} + \left(37 a + 69\right)\cdot 83^{7} + \left(3 a + 15\right)\cdot 83^{8} + \left(31 a + 54\right)\cdot 83^{9} + \left(29 a + 64\right)\cdot 83^{10} + \left(75 a + 35\right)\cdot 83^{11} +O\left(83^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(3,6)$
$(1,3)$
$(1,5,2)(3,6,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,3)(2,4)(5,6)$$-3$
$3$$2$$(1,3)$$1$
$3$$2$$(1,3)(5,6)$$-1$
$6$$2$$(2,5)(4,6)$$-1$
$6$$2$$(1,3)(2,5)(4,6)$$1$
$8$$3$$(1,5,2)(3,6,4)$$0$
$6$$4$$(1,6,3,5)$$-1$
$6$$4$$(1,3)(2,5,4,6)$$1$
$8$$6$$(1,6,4,3,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.