Properties

Label 3.3e3_19e2_103e2.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 19^{2} \cdot 103^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$103405923= 3^{3} \cdot 19^{2} \cdot 103^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 69 x^{4} - 133 x^{3} + 888 x^{2} - 822 x + 1027 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: $ x^{2} + 45 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 35 + 47 + \left(31 a + 26\right)\cdot 47^{2} + \left(25 a + 37\right)\cdot 47^{3} + \left(24 a + 26\right)\cdot 47^{4} + \left(19 a + 14\right)\cdot 47^{5} + \left(15 a + 39\right)\cdot 47^{6} + \left(25 a + 27\right)\cdot 47^{7} + \left(19 a + 41\right)\cdot 47^{8} + \left(18 a + 39\right)\cdot 47^{9} + \left(8 a + 34\right)\cdot 47^{10} + \left(30 a + 10\right)\cdot 47^{11} + \left(5 a + 37\right)\cdot 47^{12} + \left(23 a + 15\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 38 + 42\cdot 47 + 21\cdot 47^{2} + 15\cdot 47^{3} + 27\cdot 47^{4} + 44\cdot 47^{5} + 47^{6} + 47^{7} + 6\cdot 47^{8} + 3\cdot 47^{9} + 21\cdot 47^{10} + 46\cdot 47^{11} + 14\cdot 47^{12} + 26\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 10 + 4\cdot 47 + 25\cdot 47^{2} + 31\cdot 47^{3} + 19\cdot 47^{4} + 2\cdot 47^{5} + 45\cdot 47^{6} + 45\cdot 47^{7} + 40\cdot 47^{8} + 43\cdot 47^{9} + 25\cdot 47^{10} + 32\cdot 47^{12} + 20\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 21 a + 40 + \left(46 a + 23\right)\cdot 47 + \left(15 a + 40\right)\cdot 47^{2} + \left(21 a + 10\right)\cdot 47^{3} + \left(22 a + 3\right)\cdot 47^{4} + \left(27 a + 29\right)\cdot 47^{5} + \left(31 a + 3\right)\cdot 47^{6} + \left(21 a + 16\right)\cdot 47^{7} + \left(27 a + 8\right)\cdot 47^{8} + \left(28 a + 10\right)\cdot 47^{9} + \left(38 a + 33\right)\cdot 47^{10} + \left(16 a + 15\right)\cdot 47^{11} + \left(41 a + 18\right)\cdot 47^{12} + \left(23 a + 9\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 13 + \left(46 a + 45\right)\cdot 47 + \left(15 a + 20\right)\cdot 47^{2} + \left(21 a + 9\right)\cdot 47^{3} + \left(22 a + 20\right)\cdot 47^{4} + \left(27 a + 32\right)\cdot 47^{5} + \left(31 a + 7\right)\cdot 47^{6} + \left(21 a + 19\right)\cdot 47^{7} + \left(27 a + 5\right)\cdot 47^{8} + \left(28 a + 7\right)\cdot 47^{9} + \left(38 a + 12\right)\cdot 47^{10} + \left(16 a + 36\right)\cdot 47^{11} + \left(41 a + 9\right)\cdot 47^{12} + \left(23 a + 31\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 8 + 23\cdot 47 + \left(31 a + 6\right)\cdot 47^{2} + \left(25 a + 36\right)\cdot 47^{3} + \left(24 a + 43\right)\cdot 47^{4} + \left(19 a + 17\right)\cdot 47^{5} + \left(15 a + 43\right)\cdot 47^{6} + \left(25 a + 30\right)\cdot 47^{7} + \left(19 a + 38\right)\cdot 47^{8} + \left(18 a + 36\right)\cdot 47^{9} + \left(8 a + 13\right)\cdot 47^{10} + \left(30 a + 31\right)\cdot 47^{11} + \left(5 a + 28\right)\cdot 47^{12} + \left(23 a + 37\right)\cdot 47^{13} +O\left(47^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,2)(3,5)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,5)(2,3)(4,6)$ $-3$
$3$ $2$ $(2,3)$ $1$
$3$ $2$ $(1,5)(2,3)$ $-1$
$6$ $2$ $(1,4)(5,6)$ $1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,4,2)(3,5,6)$ $0$
$6$ $4$ $(1,2,5,3)$ $1$
$6$ $4$ $(1,6,5,4)(2,3)$ $-1$
$8$ $6$ $(1,4,2,5,6,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.