Properties

Label 3.3e3_13e2_41e2.6t11.1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 13^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7670403= 3^{3} \cdot 13^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 18 x^{4} + 28 x^{3} - 690 x^{2} + 2880 x - 6473 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 13 a + 9 + \left(11 a + 16\right)\cdot 19 + \left(18 a + 16\right)\cdot 19^{2} + \left(a + 11\right)\cdot 19^{3} + \left(2 a + 16\right)\cdot 19^{4} + \left(15 a + 6\right)\cdot 19^{5} + \left(5 a + 1\right)\cdot 19^{6} + \left(7 a + 3\right)\cdot 19^{7} + \left(4 a + 12\right)\cdot 19^{8} + \left(17 a + 17\right)\cdot 19^{9} + \left(11 a + 16\right)\cdot 19^{10} + \left(a + 10\right)\cdot 19^{11} + \left(12 a + 3\right)\cdot 19^{12} + \left(10 a + 14\right)\cdot 19^{13} + \left(16 a + 7\right)\cdot 19^{14} + \left(12 a + 5\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 2 }$ $=$ $ 9 + 19 + 11\cdot 19^{2} + 19^{3} + 6\cdot 19^{4} + 6\cdot 19^{5} + 2\cdot 19^{6} + 7\cdot 19^{7} + 17\cdot 19^{8} + 14\cdot 19^{9} + 18\cdot 19^{10} + 7\cdot 19^{11} + 17\cdot 19^{12} + 8\cdot 19^{13} + 8\cdot 19^{14} + 13\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 4 + \left(11 a + 16\right)\cdot 19 + \left(10 a + 18\right)\cdot 19^{2} + \left(18 a + 14\right)\cdot 19^{3} + 9 a\cdot 19^{4} + \left(7 a + 1\right)\cdot 19^{5} + \left(2 a + 17\right)\cdot 19^{6} + \left(10 a + 15\right)\cdot 19^{7} + \left(2 a + 10\right)\cdot 19^{8} + \left(13 a + 12\right)\cdot 19^{9} + \left(15 a + 8\right)\cdot 19^{10} + \left(10 a + 4\right)\cdot 19^{11} + \left(8 a + 13\right)\cdot 19^{12} + 13 a\cdot 19^{13} + \left(11 a + 10\right)\cdot 19^{14} + \left(6 a + 16\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 3 + \left(7 a + 15\right)\cdot 19 + 4\cdot 19^{2} + \left(17 a + 14\right)\cdot 19^{3} + \left(16 a + 16\right)\cdot 19^{4} + 3 a\cdot 19^{5} + \left(13 a + 11\right)\cdot 19^{6} + \left(11 a + 4\right)\cdot 19^{7} + \left(14 a + 9\right)\cdot 19^{8} + \left(a + 11\right)\cdot 19^{9} + \left(7 a + 11\right)\cdot 19^{10} + 17 a\cdot 19^{11} + \left(6 a + 14\right)\cdot 19^{12} + \left(8 a + 12\right)\cdot 19^{13} + \left(2 a + 13\right)\cdot 19^{14} + \left(6 a + 1\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 5 }$ $=$ $ 17 a + 6 + \left(7 a + 6\right)\cdot 19 + \left(8 a + 18\right)\cdot 19^{2} + 3\cdot 19^{3} + \left(9 a + 11\right)\cdot 19^{4} + \left(11 a + 17\right)\cdot 19^{5} + \left(16 a + 11\right)\cdot 19^{6} + \left(8 a + 4\right)\cdot 19^{7} + \left(16 a + 3\right)\cdot 19^{8} + \left(5 a + 4\right)\cdot 19^{9} + \left(3 a + 11\right)\cdot 19^{10} + \left(8 a + 18\right)\cdot 19^{11} + \left(10 a + 10\right)\cdot 19^{12} + \left(5 a + 5\right)\cdot 19^{13} + \left(7 a + 8\right)\cdot 19^{14} + \left(12 a + 11\right)\cdot 19^{15} +O\left(19^{ 16 }\right)$
$r_{ 6 }$ $=$ $ 10 + 19 + 6\cdot 19^{2} + 10\cdot 19^{3} + 5\cdot 19^{4} + 5\cdot 19^{5} + 13\cdot 19^{6} + 2\cdot 19^{7} + 4\cdot 19^{8} + 15\cdot 19^{9} + 8\cdot 19^{10} + 14\cdot 19^{11} + 16\cdot 19^{12} + 14\cdot 19^{13} + 8\cdot 19^{14} + 8\cdot 19^{15} +O\left(19^{ 16 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,3,2)(4,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,4)(2,6)(3,5)$ $-3$
$3$ $2$ $(1,4)$ $1$
$3$ $2$ $(1,4)(3,5)$ $-1$
$6$ $2$ $(2,3)(5,6)$ $1$
$6$ $2$ $(1,4)(2,3)(5,6)$ $-1$
$8$ $3$ $(1,3,2)(4,5,6)$ $0$
$6$ $4$ $(1,5,4,3)$ $1$
$6$ $4$ $(1,5,4,3)(2,6)$ $-1$
$8$ $6$ $(1,5,6,4,3,2)$ $0$
The blue line marks the conjugacy class containing complex conjugation.