Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 45 + 192\cdot 311 + 87\cdot 311^{2} + 202\cdot 311^{3} + 126\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 115 + 133\cdot 311 + 48\cdot 311^{2} + 241\cdot 311^{3} + 212\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 170 + 9\cdot 311 + 280\cdot 311^{2} + 293\cdot 311^{3} + 93\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 293 + 286\cdot 311 + 205\cdot 311^{2} + 195\cdot 311^{3} + 188\cdot 311^{4} +O\left(311^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character value |
| $1$ | $1$ | $()$ | $3$ |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ |
| $6$ | $2$ | $(1,2)$ | $1$ |
| $8$ | $3$ | $(1,2,3)$ | $0$ |
| $6$ | $4$ | $(1,2,3,4)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.