Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 389 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 263 + 203\cdot 389 + 317\cdot 389^{2} + 226\cdot 389^{3} + 82\cdot 389^{4} +O\left(389^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 266 + 34\cdot 389 + 96\cdot 389^{2} + 337\cdot 389^{3} + 130\cdot 389^{4} +O\left(389^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 284 + 39\cdot 389 + 254\cdot 389^{2} + 346\cdot 389^{3} + 142\cdot 389^{4} +O\left(389^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 355 + 110\cdot 389 + 110\cdot 389^{2} + 256\cdot 389^{3} + 32\cdot 389^{4} +O\left(389^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3,4)$ |
| $(1,2)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $6$ |
$2$ |
$(1,2)$ |
$1$ |
| $8$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $6$ |
$4$ |
$(1,2,3,4)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.