Properties

Label 3.3e3_109e2.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{3} \cdot 109^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$320787= 3^{3} \cdot 109^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 2 x^{4} + x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 36 + \left(40 a + 13\right)\cdot 67 + \left(31 a + 15\right)\cdot 67^{2} + \left(16 a + 39\right)\cdot 67^{3} + \left(40 a + 23\right)\cdot 67^{4} + \left(43 a + 4\right)\cdot 67^{5} + \left(38 a + 13\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 6 a + 50 + \left(24 a + 40\right)\cdot 67 + \left(24 a + 63\right)\cdot 67^{2} + \left(57 a + 15\right)\cdot 67^{3} + \left(57 a + 21\right)\cdot 67^{4} + \left(30 a + 36\right)\cdot 67^{5} + \left(7 a + 33\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 50 + 54\cdot 67 + 59\cdot 67^{2} + 62\cdot 67^{3} + 60\cdot 67^{4} + 33\cdot 67^{5} + 26\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 63 + 61\cdot 67 + 24\cdot 67^{2} + 56\cdot 67^{3} + 66\cdot 67^{4} + 19\cdot 67^{5} + 38\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 60 a + 64 + \left(26 a + 32\right)\cdot 67 + \left(35 a + 34\right)\cdot 67^{2} + \left(50 a + 6\right)\cdot 67^{3} + \left(26 a + 34\right)\cdot 67^{4} + \left(23 a + 4\right)\cdot 67^{5} + \left(28 a + 57\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 61 a + 7 + \left(42 a + 64\right)\cdot 67 + \left(42 a + 2\right)\cdot 67^{2} + \left(9 a + 20\right)\cdot 67^{3} + \left(9 a + 61\right)\cdot 67^{4} + \left(36 a + 34\right)\cdot 67^{5} + \left(59 a + 32\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)$
$(1,2)(5,6)$
$(1,2,3)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,5)(3,4)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(2,5)$$-1$
$6$$2$$(2,3)(4,5)$$-1$
$6$$2$$(1,6)(2,3)(4,5)$$1$
$8$$3$$(1,2,3)(4,6,5)$$0$
$6$$4$$(1,5,6,2)$$-1$
$6$$4$$(1,6)(2,4,5,3)$$1$
$8$$6$$(1,5,4,6,2,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.