Properties

Label 3.3e2_7e2_229.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{2} \cdot 7^{2} \cdot 229 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$100989= 3^{2} \cdot 7^{2} \cdot 229 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 4 x^{4} - 58 x^{3} + 257 x^{2} - 667 x + 461 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.229.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 15.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 7\cdot 17 + 13\cdot 17^{2} + 3\cdot 17^{3} + 14\cdot 17^{4} + 11\cdot 17^{5} + 2\cdot 17^{6} + 13\cdot 17^{7} + 6\cdot 17^{8} + 16\cdot 17^{9} + 4\cdot 17^{10} + 8\cdot 17^{11} + 17^{12} + 4\cdot 17^{13} + 11\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 5 + 12\cdot 17 + 15\cdot 17^{2} + \left(4 a + 16\right)\cdot 17^{3} + 12\cdot 17^{4} + \left(15 a + 4\right)\cdot 17^{5} + \left(4 a + 3\right)\cdot 17^{6} + \left(6 a + 14\right)\cdot 17^{7} + \left(5 a + 2\right)\cdot 17^{8} + \left(10 a + 4\right)\cdot 17^{9} + \left(16 a + 2\right)\cdot 17^{10} + \left(2 a + 1\right)\cdot 17^{11} + \left(14 a + 10\right)\cdot 17^{12} + 11 a\cdot 17^{13} + \left(9 a + 13\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 3 a\cdot 17 + \left(6 a + 3\right)\cdot 17^{2} + \left(5 a + 6\right)\cdot 17^{3} + \left(12 a + 13\right)\cdot 17^{4} + \left(7 a + 13\right)\cdot 17^{5} + \left(4 a + 15\right)\cdot 17^{6} + \left(8 a + 1\right)\cdot 17^{7} + \left(5 a + 5\right)\cdot 17^{8} + \left(16 a + 12\right)\cdot 17^{9} + \left(9 a + 9\right)\cdot 17^{10} + 15 a\cdot 17^{11} + \left(15 a + 16\right)\cdot 17^{12} + \left(4 a + 8\right)\cdot 17^{13} + \left(3 a + 9\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 11 + \left(13 a + 9\right)\cdot 17 + \left(10 a + 5\right)\cdot 17^{2} + \left(11 a + 5\right)\cdot 17^{3} + \left(4 a + 3\right)\cdot 17^{4} + \left(9 a + 9\right)\cdot 17^{5} + \left(12 a + 12\right)\cdot 17^{6} + \left(8 a + 5\right)\cdot 17^{7} + \left(11 a + 2\right)\cdot 17^{8} + 6\cdot 17^{9} + \left(7 a + 3\right)\cdot 17^{10} + \left(a + 6\right)\cdot 17^{11} + \left(a + 16\right)\cdot 17^{12} + \left(12 a + 14\right)\cdot 17^{13} + \left(13 a + 7\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 5 }$ $=$ $ 12 a + 10 + \left(16 a + 7\right)\cdot 17 + \left(16 a + 15\right)\cdot 17^{2} + \left(12 a + 3\right)\cdot 17^{3} + \left(16 a + 9\right)\cdot 17^{4} + \left(a + 2\right)\cdot 17^{5} + \left(12 a + 10\right)\cdot 17^{6} + \left(10 a + 15\right)\cdot 17^{7} + \left(11 a + 1\right)\cdot 17^{8} + \left(6 a + 9\right)\cdot 17^{9} + 8\cdot 17^{10} + \left(14 a + 4\right)\cdot 17^{11} + \left(2 a + 4\right)\cdot 17^{12} + \left(5 a + 15\right)\cdot 17^{13} + \left(7 a + 10\right)\cdot 17^{14} +O\left(17^{ 15 }\right)$
$r_{ 6 }$ $=$ $ 6 + 14\cdot 17 + 14\cdot 17^{2} + 14\cdot 17^{3} + 14\cdot 17^{4} + 8\cdot 17^{5} + 6\cdot 17^{6} + 15\cdot 17^{8} + 2\cdot 17^{9} + 5\cdot 17^{10} + 13\cdot 17^{11} + 2\cdot 17^{12} + 7\cdot 17^{13} + 15\cdot 17^{14} +O\left(17^{ 15 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(4,6)$
$(1,3,2)(4,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,4)(3,5)$$-3$
$3$$2$$(3,5)$$1$
$3$$2$$(2,4)(3,5)$$-1$
$6$$2$$(1,2)(4,6)$$-1$
$6$$2$$(1,2)(3,5)(4,6)$$1$
$8$$3$$(1,3,2)(4,6,5)$$0$
$6$$4$$(2,3,4,5)$$-1$
$6$$4$$(1,6)(2,3,4,5)$$1$
$8$$6$$(1,3,4,6,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.