Basic invariants
| Dimension: | $3$ |
| Group: | $A_4$ |
| Conductor: | \(159201\)\(\medspace = 3^{2} \cdot 7^{2} \cdot 19^{2} \) |
| Frobenius-Schur indicator: | $1$ |
| Root number: | $1$ |
| Artin stem field: | Galois closure of 4.0.159201.1 |
| Galois orbit size: | $1$ |
| Smallest permutation container: | $A_4$ |
| Parity: | even |
| Determinant: | 1.1.1t1.a.a |
| Projective image: | $A_4$ |
| Projective stem field: | Galois closure of 4.0.159201.1 |
Defining polynomial
| $f(x)$ | $=$ |
\( x^{4} - 2x^{3} + 7x^{2} + 21x + 63 \)
|
The roots of $f$ are computed in $\Q_{ 47 }$ to precision 5.
Roots:
| $r_{ 1 }$ | $=$ |
\( 9 + 4\cdot 47 + 47^{2} + 38\cdot 47^{3} +O(47^{5})\)
|
| $r_{ 2 }$ | $=$ |
\( 18 + 21\cdot 47 + 3\cdot 47^{2} + 26\cdot 47^{3} + 21\cdot 47^{4} +O(47^{5})\)
|
| $r_{ 3 }$ | $=$ |
\( 31 + 31\cdot 47 + 31\cdot 47^{2} + 10\cdot 47^{3} + 19\cdot 47^{4} +O(47^{5})\)
|
| $r_{ 4 }$ | $=$ |
\( 38 + 36\cdot 47 + 10\cdot 47^{2} + 19\cdot 47^{3} + 5\cdot 47^{4} +O(47^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 4 }$
| Cycle notation |
Character values on conjugacy classes
| Size | Order | Action on $r_1, \ldots, r_{ 4 }$ | Character value | Complex conjugation |
| $1$ | $1$ | $()$ | $3$ | |
| $3$ | $2$ | $(1,2)(3,4)$ | $-1$ | ✓ |
| $4$ | $3$ | $(1,2,3)$ | $0$ | |
| $4$ | $3$ | $(1,3,2)$ | $0$ |