Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 191 }$ to precision 5.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 30 + 152\cdot 191 + 186\cdot 191^{2} + 100\cdot 191^{3} + 138\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 70 + 18\cdot 191 + 127\cdot 191^{2} + 128\cdot 191^{3} + 4\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 128 + 32\cdot 191 + 114\cdot 191^{2} + 153\cdot 191^{3} + 41\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 155 + 178\cdot 191 + 144\cdot 191^{2} + 189\cdot 191^{3} + 5\cdot 191^{4} +O\left(191^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 4 }$
| Cycle notation |
| $(1,2,3)$ |
| $(1,2)(3,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 4 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $3$ |
$2$ |
$(1,2)(3,4)$ |
$-1$ |
| $4$ |
$3$ |
$(1,2,3)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,2)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.