Properties

Label 3.3e2_5e2_167e2.6t8.2
Dimension 3
Group $S_4$
Conductor $ 3^{2} \cdot 5^{2} \cdot 167^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$6275025= 3^{2} \cdot 5^{2} \cdot 167^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 6 x^{2} + 5 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 137 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 36 + 31\cdot 137 + 31\cdot 137^{2} + 29\cdot 137^{3} + 69\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 53 + 60\cdot 137 + 49\cdot 137^{2} + 68\cdot 137^{3} + 60\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 67 + 40\cdot 137 + 69\cdot 137^{2} + 16\cdot 137^{3} + 94\cdot 137^{4} +O\left(137^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 119 + 4\cdot 137 + 124\cdot 137^{2} + 22\cdot 137^{3} + 50\cdot 137^{4} +O\left(137^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.