Properties

Label 3.3e2_5e2_11e3.42t37.1
Dimension 3
Group $\GL(3,2)$
Conductor $ 3^{2} \cdot 5^{2} \cdot 11^{3}$
Frobenius-Schur indicator 0

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$\GL(3,2)$
Conductor:$299475= 3^{2} \cdot 5^{2} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{7} - x^{6} - 9 x^{5} + 21 x^{4} - 3 x^{3} - 23 x^{2} + 10 x + 9 $ over $\Q$
Size of Galois orbit: 2
Smallest containing permutation representation: $\PSL(2,7)$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{3} + 2 x + 11 $
Roots:
$r_{ 1 }$ $=$ $ 5 a^{2} + 4 + \left(8 a^{2} + 4 a + 4\right)\cdot 13 + \left(2 a^{2} + 7 a + 5\right)\cdot 13^{2} + \left(7 a^{2} + 11 a + 9\right)\cdot 13^{3} + \left(9 a^{2} + 4 a + 11\right)\cdot 13^{4} + \left(6 a^{2} + 4 a + 5\right)\cdot 13^{5} + \left(12 a^{2} + 1\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 8 + 3\cdot 13 + 5\cdot 13^{2} + 9\cdot 13^{3} + 7\cdot 13^{4} + 12\cdot 13^{5} + 8\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 9 + \left(a^{2} + 11 a + 2\right)\cdot 13 + \left(a + 5\right)\cdot 13^{2} + \left(5 a^{2} + 2 a + 12\right)\cdot 13^{3} + \left(4 a^{2} + 9 a + 12\right)\cdot 13^{4} + \left(5 a^{2} + 12 a + 5\right)\cdot 13^{5} + \left(11 a^{2} + a + 1\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 7 a^{2} + 2 a + 1 + \left(12 a^{2} + 9 a + 5\right)\cdot 13 + \left(11 a^{2} + 12\right)\cdot 13^{2} + \left(5 a^{2} + 12 a + 4\right)\cdot 13^{3} + \left(6 a^{2} + 2 a + 11\right)\cdot 13^{4} + \left(11 a^{2} + a + 9\right)\cdot 13^{5} + \left(6 a^{2} + 6 a + 12\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 12 a^{2} + 8 a + 9 + \left(9 a^{2} + 8 a + 10\right)\cdot 13 + \left(5 a^{2} + 5 a\right)\cdot 13^{2} + \left(11 a^{2} + 5 a + 2\right)\cdot 13^{3} + \left(8 a^{2} + 5 a + 2\right)\cdot 13^{4} + \left(a^{2} + 8 a + 12\right)\cdot 13^{5} + \left(9 a^{2} + 4 a + 9\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 6 a^{2} + 7 a + 4 + \left(12 a^{2} + 5 a + 9\right)\cdot 13 + \left(10 a + 10\right)\cdot 13^{2} + \left(2 a^{2} + 11 a + 12\right)\cdot 13^{3} + \left(2 a^{2} + 9\right)\cdot 13^{4} + \left(9 a^{2} + 12 a + 6\right)\cdot 13^{5} + \left(7 a^{2} + 4 a + 9\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$
$r_{ 7 }$ $=$ $ 9 a^{2} + 5 a + 5 + \left(7 a^{2} + 3\right)\cdot 13 + \left(4 a^{2} + 12\right)\cdot 13^{2} + \left(7 a^{2} + 9 a\right)\cdot 13^{3} + \left(7 a^{2} + 2 a + 9\right)\cdot 13^{4} + \left(4 a^{2} + 11\right)\cdot 13^{5} + \left(4 a^{2} + 8 a + 7\right)\cdot 13^{6} +O\left(13^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 7 }$

Cycle notation
$(1,2)(4,7,6,5)$
$(1,5)(3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 7 }$ Character values
$c1$ $c2$
$1$ $1$ $()$ $3$ $3$
$21$ $2$ $(1,5)(3,4)$ $-1$ $-1$
$56$ $3$ $(1,7,5)(3,6,4)$ $0$ $0$
$42$ $4$ $(1,2)(4,7,6,5)$ $1$ $1$
$24$ $7$ $(1,4,3,7,6,5,2)$ $\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$ $-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$
$24$ $7$ $(1,7,2,3,5,4,6)$ $-\zeta_{7}^{4} - \zeta_{7}^{2} - \zeta_{7} - 1$ $\zeta_{7}^{4} + \zeta_{7}^{2} + \zeta_{7}$
The blue line marks the conjugacy class containing complex conjugation.