Properties

Label 3.3e2_5_167.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{2} \cdot 5 \cdot 167 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$7515= 3^{2} \cdot 5 \cdot 167 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + 3 x^{3} - 18 x + 27 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd
Determinant: 1.5_167.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 55 + 2\cdot 67 + 11\cdot 67^{2} + 36\cdot 67^{3} + 48\cdot 67^{4} + 2\cdot 67^{5} + 5\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 56 + \left(29 a + 27\right)\cdot 67 + \left(23 a + 26\right)\cdot 67^{2} + \left(57 a + 21\right)\cdot 67^{3} + \left(14 a + 62\right)\cdot 67^{4} + \left(34 a + 24\right)\cdot 67^{5} + \left(61 a + 22\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 3 }$ $=$ $ 42 a + 22 + \left(37 a + 53\right)\cdot 67 + \left(43 a + 23\right)\cdot 67^{2} + \left(9 a + 26\right)\cdot 67^{3} + \left(52 a + 64\right)\cdot 67^{4} + \left(32 a + 12\right)\cdot 67^{5} + \left(5 a + 33\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 4 }$ $=$ $ 50 + 62\cdot 67 + 55\cdot 67^{2} + 42\cdot 67^{3} + 42\cdot 67^{4} + 13\cdot 67^{5} + 35\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 5 }$ $=$ $ 45 a + 54 + \left(65 a + 18\right)\cdot 67 + \left(2 a + 35\right)\cdot 67^{2} + \left(26 a + 53\right)\cdot 67^{3} + 3\cdot 67^{4} + \left(62 a + 50\right)\cdot 67^{5} + \left(34 a + 13\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 33 + \left(a + 35\right)\cdot 67 + \left(64 a + 48\right)\cdot 67^{2} + \left(40 a + 20\right)\cdot 67^{3} + \left(66 a + 46\right)\cdot 67^{4} + \left(4 a + 29\right)\cdot 67^{5} + \left(32 a + 24\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5,2)(3,4,6)$
$(1,2)(3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(2,3)$$1$
$3$$2$$(1,4)(2,3)$$-1$
$6$$2$$(1,5)(4,6)$$1$
$6$$2$$(1,5)(2,3)(4,6)$$-1$
$8$$3$$(1,5,2)(3,4,6)$$0$
$6$$4$$(1,2,4,3)$$1$
$6$$4$$(1,6,4,5)(2,3)$$-1$
$8$$6$$(1,5,2,4,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.