Properties

Label 3.3e2_397.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{2} \cdot 397 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3573= 3^{2} \cdot 397 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 6 x^{4} + 8 x^{3} - 53 x^{2} - 99 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.397.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 11.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 31 + 11\cdot 37 + 35\cdot 37^{2} + 4\cdot 37^{3} + 32\cdot 37^{4} + 9\cdot 37^{5} + 20\cdot 37^{6} + 6\cdot 37^{7} + 32\cdot 37^{8} + 24\cdot 37^{9} + 5\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 2 }$ $=$ $ 31 a + 22 + \left(18 a + 28\right)\cdot 37 + \left(23 a + 6\right)\cdot 37^{2} + \left(3 a + 16\right)\cdot 37^{3} + \left(8 a + 7\right)\cdot 37^{4} + 27\cdot 37^{5} + \left(2 a + 4\right)\cdot 37^{6} + \left(23 a + 30\right)\cdot 37^{7} + \left(3 a + 17\right)\cdot 37^{8} + \left(24 a + 18\right)\cdot 37^{9} + \left(22 a + 16\right)\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 3 }$ $=$ $ 6 a + 35 + \left(18 a + 35\right)\cdot 37 + \left(13 a + 7\right)\cdot 37^{2} + \left(33 a + 7\right)\cdot 37^{3} + \left(28 a + 36\right)\cdot 37^{4} + \left(36 a + 19\right)\cdot 37^{5} + \left(34 a + 12\right)\cdot 37^{6} + \left(13 a + 9\right)\cdot 37^{7} + \left(33 a + 9\right)\cdot 37^{8} + 12 a\cdot 37^{9} + \left(14 a + 9\right)\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 4 }$ $=$ $ 35 + 26\cdot 37 + 18\cdot 37^{2} + 24\cdot 37^{3} + 2\cdot 37^{4} + 29\cdot 37^{5} + 19\cdot 37^{6} + 33\cdot 37^{7} + 22\cdot 37^{8} + 12\cdot 37^{9} + 21\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 4 + \left(2 a + 10\right)\cdot 37 + \left(26 a + 7\right)\cdot 37^{2} + \left(7 a + 8\right)\cdot 37^{3} + \left(4 a + 30\right)\cdot 37^{4} + \left(12 a + 8\right)\cdot 37^{5} + \left(36 a + 34\right)\cdot 37^{6} + \left(6 a + 19\right)\cdot 37^{7} + \left(15 a + 24\right)\cdot 37^{8} + \left(7 a + 1\right)\cdot 37^{9} + \left(35 a + 18\right)\cdot 37^{10} +O\left(37^{ 11 }\right)$
$r_{ 6 }$ $=$ $ 14 a + 22 + \left(34 a + 34\right)\cdot 37 + \left(10 a + 34\right)\cdot 37^{2} + \left(29 a + 12\right)\cdot 37^{3} + \left(32 a + 2\right)\cdot 37^{4} + \left(24 a + 16\right)\cdot 37^{5} + 19\cdot 37^{6} + \left(30 a + 11\right)\cdot 37^{7} + \left(21 a + 4\right)\cdot 37^{8} + \left(29 a + 16\right)\cdot 37^{9} + \left(a + 3\right)\cdot 37^{10} +O\left(37^{ 11 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,5)(3,6)$
$(1,5,2)(3,4,6)$
$(5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,3)(5,6)$$-3$
$3$$2$$(2,3)(5,6)$$-1$
$3$$2$$(2,3)$$1$
$6$$2$$(2,5)(3,6)$$-1$
$6$$2$$(1,5)(2,3)(4,6)$$1$
$8$$3$$(1,5,2)(3,4,6)$$0$
$6$$4$$(2,6,3,5)$$-1$
$6$$4$$(1,4)(2,6,3,5)$$1$
$8$$6$$(1,2,6,4,3,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.