Properties

Label 3.3e2_37e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 3^{2} \cdot 37^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$12321= 3^{2} \cdot 37^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 3 x^{2} - 7 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 61 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 3 + 59\cdot 61 + 48\cdot 61^{2} + 50\cdot 61^{3} + 8\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 10\cdot 61^{2} + 60\cdot 61^{3} + 33\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 22 + 18\cdot 61 + 41\cdot 61^{2} + 56\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 + 44\cdot 61 + 21\cdot 61^{2} + 10\cdot 61^{3} + 23\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.