Properties

Label 3.3e2_379.4t5.1
Dimension 3
Group $S_4$
Conductor $ 3^{2} \cdot 379 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$3411= 3^{2} \cdot 379 $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 4 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 167 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 53 + 148\cdot 167 + 15\cdot 167^{2} + 134\cdot 167^{3} + 164\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 75 + 141\cdot 167 + 2\cdot 167^{2} + 113\cdot 167^{3} + 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 87 + 110\cdot 167 + 43\cdot 167^{2} + 116\cdot 167^{3} + 150\cdot 167^{4} +O\left(167^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 120 + 100\cdot 167 + 104\cdot 167^{2} + 137\cdot 167^{3} + 16\cdot 167^{4} +O\left(167^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.