Properties

Label 3.3e2_367.6t11.2
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{2} \cdot 367 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$3303= 3^{2} \cdot 367 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 21 x^{4} - 37 x^{3} + 84 x^{2} - 66 x + 67 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 22 a + 25 + \left(30 a + 26\right)\cdot 31 + \left(10 a + 19\right)\cdot 31^{2} + \left(13 a + 7\right)\cdot 31^{3} + \left(27 a + 10\right)\cdot 31^{4} + \left(9 a + 19\right)\cdot 31^{5} + \left(12 a + 23\right)\cdot 31^{6} + \left(27 a + 9\right)\cdot 31^{7} + \left(a + 27\right)\cdot 31^{8} + \left(26 a + 5\right)\cdot 31^{9} + \left(16 a + 27\right)\cdot 31^{10} + \left(16 a + 22\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 30 + 17\cdot 31 + 23\cdot 31^{2} + 2\cdot 31^{3} + 21\cdot 31^{4} + 19\cdot 31^{5} + 16\cdot 31^{6} + 10\cdot 31^{7} + 13\cdot 31^{8} + 20\cdot 31^{9} + 25\cdot 31^{10} + 12\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 7 + 4\cdot 31 + \left(20 a + 11\right)\cdot 31^{2} + \left(17 a + 23\right)\cdot 31^{3} + \left(3 a + 20\right)\cdot 31^{4} + \left(21 a + 11\right)\cdot 31^{5} + \left(18 a + 7\right)\cdot 31^{6} + \left(3 a + 21\right)\cdot 31^{7} + \left(29 a + 3\right)\cdot 31^{8} + \left(4 a + 25\right)\cdot 31^{9} + \left(14 a + 3\right)\cdot 31^{10} + \left(14 a + 8\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 18 a + 29 + \left(12 a + 11\right)\cdot 31 + \left(26 a + 26\right)\cdot 31^{2} + \left(30 a + 28\right)\cdot 31^{3} + \left(27 a + 2\right)\cdot 31^{4} + \left(11 a + 2\right)\cdot 31^{5} + 21 a\cdot 31^{6} + \left(8 a + 2\right)\cdot 31^{7} + \left(25 a + 10\right)\cdot 31^{8} + \left(4 a + 23\right)\cdot 31^{9} + 17 a\cdot 31^{10} + \left(12 a + 27\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 2 + 13\cdot 31 + 7\cdot 31^{2} + 28\cdot 31^{3} + 9\cdot 31^{4} + 11\cdot 31^{5} + 14\cdot 31^{6} + 20\cdot 31^{7} + 17\cdot 31^{8} + 10\cdot 31^{9} + 5\cdot 31^{10} + 18\cdot 31^{11} +O\left(31^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 13 a + 3 + \left(18 a + 19\right)\cdot 31 + \left(4 a + 4\right)\cdot 31^{2} + 2\cdot 31^{3} + \left(3 a + 28\right)\cdot 31^{4} + \left(19 a + 28\right)\cdot 31^{5} + \left(9 a + 30\right)\cdot 31^{6} + \left(22 a + 28\right)\cdot 31^{7} + \left(5 a + 20\right)\cdot 31^{8} + \left(26 a + 7\right)\cdot 31^{9} + \left(13 a + 30\right)\cdot 31^{10} + \left(18 a + 3\right)\cdot 31^{11} +O\left(31^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)$
$(1,2)(3,5)$
$(1,2,4)(3,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$1$ $2$ $(1,3)(2,5)(4,6)$ $-3$
$3$ $2$ $(1,3)$ $1$
$3$ $2$ $(1,3)(2,5)$ $-1$
$6$ $2$ $(2,4)(5,6)$ $-1$
$6$ $2$ $(1,3)(2,4)(5,6)$ $1$
$8$ $3$ $(1,2,4)(3,5,6)$ $0$
$6$ $4$ $(1,5,3,2)$ $-1$
$6$ $4$ $(1,3)(2,6,5,4)$ $1$
$8$ $6$ $(1,5,6,3,2,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.