Properties

Label 3.3e2_31e2_43e2.6t8.1c1
Dimension 3
Group $S_4$
Conductor $ 3^{2} \cdot 31^{2} \cdot 43^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$15992001= 3^{2} \cdot 31^{2} \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} - 10 x^{2} - 11 x - 8 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 293 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 113 + 142\cdot 293 + 111\cdot 293^{2} + 147\cdot 293^{3} + 115\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 123 + 166\cdot 293 + 253\cdot 293^{2} + 163\cdot 293^{3} + 140\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 166 + 235\cdot 293 + 53\cdot 293^{2} + 119\cdot 293^{3} + 48\cdot 293^{4} +O\left(293^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 185 + 41\cdot 293 + 167\cdot 293^{2} + 155\cdot 293^{3} + 281\cdot 293^{4} +O\left(293^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$-1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.