Properties

Label 3.3e2_307.4t5.2c1
Dimension 3
Group $S_4$
Conductor $ 3^{2} \cdot 307 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$2763= 3^{2} \cdot 307 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - x^{3} - x^{2} - 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.307.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 9.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 8 + \left(6 a + 5\right)\cdot 23 + \left(7 a + 19\right)\cdot 23^{2} + \left(12 a + 19\right)\cdot 23^{3} + \left(10 a + 2\right)\cdot 23^{4} + \left(7 a + 16\right)\cdot 23^{5} + \left(17 a + 7\right)\cdot 23^{6} + \left(12 a + 19\right)\cdot 23^{7} + \left(17 a + 5\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 15 + \left(11 a + 1\right)\cdot 23 + \left(2 a + 6\right)\cdot 23^{2} + \left(17 a + 1\right)\cdot 23^{3} + \left(11 a + 17\right)\cdot 23^{4} + \left(6 a + 10\right)\cdot 23^{5} + \left(10 a + 8\right)\cdot 23^{6} + 16 a\cdot 23^{7} + \left(13 a + 5\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 3 }$ $=$ $ 18 + 15\cdot 23 + 8\cdot 23^{2} + 9\cdot 23^{3} + 9\cdot 23^{4} + 12\cdot 23^{5} + 11\cdot 23^{6} + 9\cdot 23^{7} + 10\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 4 }$ $=$ $ 20 a + 14 + \left(16 a + 14\right)\cdot 23 + \left(15 a + 4\right)\cdot 23^{2} + \left(10 a + 14\right)\cdot 23^{3} + \left(12 a + 11\right)\cdot 23^{4} + \left(15 a + 20\right)\cdot 23^{5} + \left(5 a + 11\right)\cdot 23^{6} + \left(10 a + 4\right)\cdot 23^{7} + \left(5 a + 5\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 5 }$ $=$ $ 18 a + 2 + \left(11 a + 19\right)\cdot 23 + \left(20 a + 22\right)\cdot 23^{2} + \left(5 a + 9\right)\cdot 23^{3} + 11 a\cdot 23^{4} + \left(16 a + 12\right)\cdot 23^{5} + \left(12 a + 22\right)\cdot 23^{6} + \left(6 a + 22\right)\cdot 23^{7} + \left(9 a + 15\right)\cdot 23^{8} +O\left(23^{ 9 }\right)$
$r_{ 6 }$ $=$ $ 14 + 12\cdot 23 + 7\cdot 23^{2} + 14\cdot 23^{3} + 4\cdot 23^{4} + 20\cdot 23^{5} + 6\cdot 23^{6} + 12\cdot 23^{7} + 3\cdot 23^{8} +O\left(23^{ 9 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)$
$(1,5)(2,4)$
$(1,5,6)(2,4,3)$
$(1,4,3)(2,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(4,5)$$-1$
$6$$2$$(1,4)(2,5)$$1$
$8$$3$$(1,6,5)(2,3,4)$$0$
$6$$4$$(1,2)(3,5,6,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.