Properties

Label 3.3e2_29_43e2.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{2} \cdot 29 \cdot 43^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$482589= 3^{2} \cdot 29 \cdot 43^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 8 x^{4} - 12 x^{3} + 50 x^{2} + 318 x - 927 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.29.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10 a + 4 + \left(12 a + 29\right)\cdot 59 + \left(48 a + 29\right)\cdot 59^{2} + \left(18 a + 22\right)\cdot 59^{3} + \left(13 a + 18\right)\cdot 59^{4} + \left(22 a + 37\right)\cdot 59^{5} + \left(23 a + 44\right)\cdot 59^{6} + \left(31 a + 18\right)\cdot 59^{7} + \left(21 a + 41\right)\cdot 59^{8} + \left(58 a + 16\right)\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 49 a + 14 + \left(46 a + 31\right)\cdot 59 + \left(10 a + 6\right)\cdot 59^{2} + \left(40 a + 52\right)\cdot 59^{3} + \left(45 a + 12\right)\cdot 59^{4} + \left(36 a + 46\right)\cdot 59^{5} + \left(35 a + 45\right)\cdot 59^{6} + \left(27 a + 26\right)\cdot 59^{7} + \left(37 a + 31\right)\cdot 59^{8} + 53\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 26 + \left(2 a + 16\right)\cdot 59 + \left(32 a + 35\right)\cdot 59^{2} + \left(20 a + 53\right)\cdot 59^{3} + \left(21 a + 12\right)\cdot 59^{4} + \left(35 a + 55\right)\cdot 59^{5} + 48 a\cdot 59^{6} + \left(46 a + 28\right)\cdot 59^{7} + \left(55 a + 46\right)\cdot 59^{8} + \left(49 a + 35\right)\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 54 + 22\cdot 59 + 5\cdot 59^{2} + 22\cdot 59^{3} + 11\cdot 59^{4} + 33\cdot 59^{5} + 17\cdot 59^{6} + 53\cdot 59^{7} + 19\cdot 59^{8} + 5\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 45 + 8\cdot 59 + 35\cdot 59^{2} + 43\cdot 59^{3} + 48\cdot 59^{4} + 53\cdot 59^{5} + 53\cdot 59^{6} + 23\cdot 59^{7} + 41\cdot 59^{8} + 35\cdot 59^{9} +O\left(59^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 50 a + 35 + \left(56 a + 9\right)\cdot 59 + \left(26 a + 6\right)\cdot 59^{2} + \left(38 a + 42\right)\cdot 59^{3} + \left(37 a + 13\right)\cdot 59^{4} + \left(23 a + 10\right)\cdot 59^{5} + \left(10 a + 14\right)\cdot 59^{6} + \left(12 a + 26\right)\cdot 59^{7} + \left(3 a + 55\right)\cdot 59^{8} + \left(9 a + 29\right)\cdot 59^{9} +O\left(59^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(5,6)$
$(1,6)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,6)(2,3)(4,5)$$-3$
$3$$2$$(1,6)$$1$
$3$$2$$(1,6)(4,5)$$-1$
$6$$2$$(2,4)(3,5)$$-1$
$6$$2$$(1,6)(2,4)(3,5)$$1$
$8$$3$$(1,4,2)(3,6,5)$$0$
$6$$4$$(1,5,6,4)$$-1$
$6$$4$$(1,6)(2,5,3,4)$$1$
$8$$6$$(1,5,3,6,4,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.