Properties

Label 3.3e2_17e2.6t8.3c1
Dimension 3
Group $S_4$
Conductor $ 3^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$2601= 3^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 10 x^{4} - 15 x^{3} + 12 x^{2} - 5 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 73 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 73 }$: $ x^{2} + 70 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 48 a + 38 + \left(50 a + 57\right)\cdot 73 + \left(34 a + 9\right)\cdot 73^{2} + \left(27 a + 49\right)\cdot 73^{3} + \left(25 a + 48\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a + 30 + \left(61 a + 68\right)\cdot 73 + \left(23 a + 67\right)\cdot 73^{2} + \left(25 a + 46\right)\cdot 73^{3} + 32 a\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 44 a + 44 + \left(11 a + 4\right)\cdot 73 + \left(49 a + 5\right)\cdot 73^{2} + \left(47 a + 26\right)\cdot 73^{3} + \left(40 a + 72\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 61 + 28\cdot 73 + 33\cdot 73^{2} + 52\cdot 73^{3} + 12\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 13 + 44\cdot 73 + 39\cdot 73^{2} + 20\cdot 73^{3} + 60\cdot 73^{4} +O\left(73^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 25 a + 36 + \left(22 a + 15\right)\cdot 73 + \left(38 a + 63\right)\cdot 73^{2} + \left(45 a + 23\right)\cdot 73^{3} + \left(47 a + 24\right)\cdot 73^{4} +O\left(73^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(4,5)$
$(1,6)(2,4)(3,5)$
$(1,6)(2,3)$
$(1,4,2)(3,6,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,6)(2,3)$$-1$
$6$$2$$(1,6)(2,4)(3,5)$$-1$
$8$$3$$(1,4,2)(3,6,5)$$0$
$6$$4$$(2,5,3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.