Properties

Label 3.3e2_13e2_41e2.6t8.1
Dimension 3
Group $S_4$
Conductor $ 3^{2} \cdot 13^{2} \cdot 41^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$2556801= 3^{2} \cdot 13^{2} \cdot 41^{2} $
Artin number field: Splitting field of $f= x^{4} - x^{3} + 5 x - 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 311 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 45 + 192\cdot 311 + 87\cdot 311^{2} + 202\cdot 311^{3} + 126\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 115 + 133\cdot 311 + 48\cdot 311^{2} + 241\cdot 311^{3} + 212\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 170 + 9\cdot 311 + 280\cdot 311^{2} + 293\cdot 311^{3} + 93\cdot 311^{4} +O\left(311^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 293 + 286\cdot 311 + 205\cdot 311^{2} + 195\cdot 311^{3} + 188\cdot 311^{4} +O\left(311^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character values
$c1$
$1$ $1$ $()$ $3$
$3$ $2$ $(1,2)(3,4)$ $-1$
$6$ $2$ $(1,2)$ $-1$
$8$ $3$ $(1,2,3)$ $0$
$6$ $4$ $(1,2,3,4)$ $1$
The blue line marks the conjugacy class containing complex conjugation.