Properties

Label 3.3e2_13_41.6t11.2c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{2} \cdot 13 \cdot 41 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$4797= 3^{2} \cdot 13 \cdot 41 $
Artin number field: Splitting field of $f= x^{6} - x^{5} + 5 x^{4} - 4 x^{3} + 5 x^{2} + 2 x + 19 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.13_41.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 9\cdot 19 + 6\cdot 19^{2} + 18\cdot 19^{3} + 10\cdot 19^{4} + 14\cdot 19^{5} + 14\cdot 19^{6} + 9\cdot 19^{7} + 4\cdot 19^{8} + 6\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 8 a + 3 + \left(11 a + 10\right)\cdot 19 + \left(5 a + 13\right)\cdot 19^{2} + \left(3 a + 11\right)\cdot 19^{3} + \left(11 a + 8\right)\cdot 19^{4} + \left(16 a + 5\right)\cdot 19^{5} + \left(11 a + 16\right)\cdot 19^{6} + \left(11 a + 16\right)\cdot 19^{7} + \left(5 a + 5\right)\cdot 19^{8} + \left(5 a + 12\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 11 a + 11 + \left(7 a + 13\right)\cdot 19 + \left(13 a + 7\right)\cdot 19^{2} + \left(15 a + 9\right)\cdot 19^{3} + \left(7 a + 16\right)\cdot 19^{4} + \left(2 a + 10\right)\cdot 19^{5} + \left(7 a + 11\right)\cdot 19^{6} + \left(7 a + 16\right)\cdot 19^{7} + \left(13 a + 18\right)\cdot 19^{8} + \left(13 a + 11\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 1 + \left(12 a + 15\right)\cdot 19 + \left(10 a + 1\right)\cdot 19^{2} + \left(14 a + 12\right)\cdot 19^{3} + \left(7 a + 4\right)\cdot 19^{4} + \left(9 a + 2\right)\cdot 19^{5} + \left(13 a + 6\right)\cdot 19^{6} + \left(7 a + 12\right)\cdot 19^{7} + \left(3 a + 4\right)\cdot 19^{8} + 16 a\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 6 + 17\cdot 19 + 8\cdot 19^{2} + 8\cdot 19^{3} + 18\cdot 19^{4} + 17\cdot 19^{6} + 13\cdot 19^{7} + 3\cdot 19^{8} + 13\cdot 19^{9} +O\left(19^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 18 + \left(6 a + 10\right)\cdot 19 + \left(8 a + 18\right)\cdot 19^{2} + \left(4 a + 15\right)\cdot 19^{3} + \left(11 a + 16\right)\cdot 19^{4} + \left(9 a + 3\right)\cdot 19^{5} + \left(5 a + 10\right)\cdot 19^{6} + \left(11 a + 6\right)\cdot 19^{7} + 15 a\cdot 19^{8} + \left(2 a + 13\right)\cdot 19^{9} +O\left(19^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,2)(3,5,6)$
$(1,4)(5,6)$
$(1,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,5)(2,3)(4,6)$$-3$
$3$$2$$(2,3)$$1$
$3$$2$$(1,5)(2,3)$$-1$
$6$$2$$(1,4)(5,6)$$1$
$6$$2$$(1,4)(2,3)(5,6)$$-1$
$8$$3$$(1,4,2)(3,5,6)$$0$
$6$$4$$(1,2,5,3)$$1$
$6$$4$$(1,5)(2,6,3,4)$$-1$
$8$$6$$(1,4,2,5,6,3)$$0$
The blue line marks the conjugacy class containing complex conjugation.