Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 7.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 a + 36 + \left(40 a + 13\right)\cdot 67 + \left(31 a + 15\right)\cdot 67^{2} + \left(16 a + 39\right)\cdot 67^{3} + \left(40 a + 23\right)\cdot 67^{4} + \left(43 a + 4\right)\cdot 67^{5} + \left(38 a + 13\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 6 a + 50 + \left(24 a + 40\right)\cdot 67 + \left(24 a + 63\right)\cdot 67^{2} + \left(57 a + 15\right)\cdot 67^{3} + \left(57 a + 21\right)\cdot 67^{4} + \left(30 a + 36\right)\cdot 67^{5} + \left(7 a + 33\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 50 + 54\cdot 67 + 59\cdot 67^{2} + 62\cdot 67^{3} + 60\cdot 67^{4} + 33\cdot 67^{5} + 26\cdot 67^{6} +O\left(67^{ 7 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 63 + 61\cdot 67 + 24\cdot 67^{2} + 56\cdot 67^{3} + 66\cdot 67^{4} + 19\cdot 67^{5} + 38\cdot 67^{6} +O\left(67^{ 7 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 60 a + 64 + \left(26 a + 32\right)\cdot 67 + \left(35 a + 34\right)\cdot 67^{2} + \left(50 a + 6\right)\cdot 67^{3} + \left(26 a + 34\right)\cdot 67^{4} + \left(23 a + 4\right)\cdot 67^{5} + \left(28 a + 57\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 61 a + 7 + \left(42 a + 64\right)\cdot 67 + \left(42 a + 2\right)\cdot 67^{2} + \left(9 a + 20\right)\cdot 67^{3} + \left(9 a + 61\right)\cdot 67^{4} + \left(36 a + 34\right)\cdot 67^{5} + \left(59 a + 32\right)\cdot 67^{6} +O\left(67^{ 7 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6)$ |
| $(1,2)(5,6)$ |
| $(1,2,3)(4,6,5)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$3$ |
| $1$ |
$2$ |
$(1,6)(2,5)(3,4)$ |
$-3$ |
| $3$ |
$2$ |
$(1,6)$ |
$1$ |
| $3$ |
$2$ |
$(1,6)(2,5)$ |
$-1$ |
| $6$ |
$2$ |
$(2,3)(4,5)$ |
$1$ |
| $6$ |
$2$ |
$(1,6)(2,3)(4,5)$ |
$-1$ |
| $8$ |
$3$ |
$(1,2,3)(4,6,5)$ |
$0$ |
| $6$ |
$4$ |
$(1,5,6,2)$ |
$1$ |
| $6$ |
$4$ |
$(1,6)(2,4,5,3)$ |
$-1$ |
| $8$ |
$6$ |
$(1,5,4,6,2,3)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.