Properties

Label 3.3e2_109.6t11.1c1
Dimension 3
Group $S_4\times C_2$
Conductor $ 3^{2} \cdot 109 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4\times C_2$
Conductor:$981= 3^{2} \cdot 109 $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 12 x^{4} - 19 x^{3} + 15 x^{2} - 6 x - 137 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4\times C_2$
Parity: Even
Determinant: 1.109.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 10.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 26 + \left(8 a + 28\right)\cdot 29 + \left(23 a + 26\right)\cdot 29^{2} + \left(14 a + 8\right)\cdot 29^{3} + \left(9 a + 8\right)\cdot 29^{4} + \left(7 a + 12\right)\cdot 29^{5} + \left(8 a + 1\right)\cdot 29^{6} + \left(25 a + 13\right)\cdot 29^{7} + \left(18 a + 28\right)\cdot 29^{8} + \left(28 a + 23\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 2 }$ $=$ $ 19 a + 25 + \left(8 a + 4\right)\cdot 29 + \left(23 a + 10\right)\cdot 29^{2} + \left(14 a + 27\right)\cdot 29^{3} + \left(9 a + 16\right)\cdot 29^{4} + \left(7 a + 18\right)\cdot 29^{5} + \left(8 a + 22\right)\cdot 29^{6} + \left(25 a + 13\right)\cdot 29^{7} + \left(18 a + 18\right)\cdot 29^{8} + \left(28 a + 25\right)\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 3 }$ $=$ $ 13 + 22\cdot 29 + 12\cdot 29^{2} + 17\cdot 29^{3} + 16\cdot 29^{4} + 13\cdot 29^{5} + 18\cdot 29^{6} + 16\cdot 29^{7} + 22\cdot 29^{8} + 17\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 4 }$ $=$ $ 10 a + 4 + 20 a\cdot 29 + \left(5 a + 2\right)\cdot 29^{2} + \left(14 a + 20\right)\cdot 29^{3} + \left(19 a + 20\right)\cdot 29^{4} + \left(21 a + 16\right)\cdot 29^{5} + \left(20 a + 27\right)\cdot 29^{6} + \left(3 a + 15\right)\cdot 29^{7} + 10 a\cdot 29^{8} + 5\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 5 }$ $=$ $ 17 + 6\cdot 29 + 16\cdot 29^{2} + 11\cdot 29^{3} + 12\cdot 29^{4} + 15\cdot 29^{5} + 10\cdot 29^{6} + 12\cdot 29^{7} + 6\cdot 29^{8} + 11\cdot 29^{9} +O\left(29^{ 10 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 5 + \left(20 a + 24\right)\cdot 29 + \left(5 a + 18\right)\cdot 29^{2} + \left(14 a + 1\right)\cdot 29^{3} + \left(19 a + 12\right)\cdot 29^{4} + \left(21 a + 10\right)\cdot 29^{5} + \left(20 a + 6\right)\cdot 29^{6} + \left(3 a + 15\right)\cdot 29^{7} + \left(10 a + 10\right)\cdot 29^{8} + 3\cdot 29^{9} +O\left(29^{ 10 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,3)(5,6)$
$(1,3,2)(4,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$3$
$1$$2$$(1,4)(2,6)(3,5)$$-3$
$3$$2$$(3,5)$$1$
$3$$2$$(2,6)(3,5)$$-1$
$6$$2$$(1,2)(4,6)$$-1$
$6$$2$$(1,2)(3,5)(4,6)$$1$
$8$$3$$(1,3,2)(4,5,6)$$0$
$6$$4$$(2,3,6,5)$$-1$
$6$$4$$(1,6,4,2)(3,5)$$1$
$8$$6$$(1,3,6,4,5,2)$$0$
The blue line marks the conjugacy class containing complex conjugation.