Properties

Label 3.3_7e2_229.4t5.1c1
Dimension 3
Group $S_4$
Conductor $ 3 \cdot 7^{2} \cdot 229 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$3$
Group:$S_4$
Conductor:$33663= 3 \cdot 7^{2} \cdot 229 $
Artin number field: Splitting field of $f= x^{4} - 2 x^{3} - x^{2} - 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_4$
Parity: Odd
Determinant: 1.3_229.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 419 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 15 + 96\cdot 419 + 77\cdot 419^{2} + 191\cdot 419^{3} + 315\cdot 419^{4} +O\left(419^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 191 + 256\cdot 419 + 241\cdot 419^{2} + 9\cdot 419^{3} + 107\cdot 419^{4} +O\left(419^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 293 + 207\cdot 419 + 203\cdot 419^{2} + 312\cdot 419^{3} + 409\cdot 419^{4} +O\left(419^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 341 + 277\cdot 419 + 315\cdot 419^{2} + 324\cdot 419^{3} + 5\cdot 419^{4} +O\left(419^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 4 }$

Cycle notation
$(1,2,3,4)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 4 }$ Character value
$1$$1$$()$$3$
$3$$2$$(1,2)(3,4)$$-1$
$6$$2$$(1,2)$$1$
$8$$3$$(1,2,3)$$0$
$6$$4$$(1,2,3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.